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ABSTRACT. Significance: Diabetes is a prevalent disease worldwide that can cause severe
health problems. Accurate blood glucose detection is crucial for diabetes manage-
ment, and noninvasive methods can be more convenient and less painful than tradi-
tional finger-prick methods.

Aim: We aim to report a noncontact speckle-based blood glucose measurement sys-
tem that utilizes artificial intelligence (AI) data processing to improve glucose detection
accuracy. The study also explores the influence of an alternating current (AC) induced
magnetic field on the sensitivity and selectivity of blood glucose detection.

Approach: The proposed blood glucose sensor consists of a digital camera, an
AC-generated magnetic field source, a laser illuminating the subject’s finger, and
a computer. A magnetic field is applied to the finger, and a camera records the
speckle patterns generated by the laser light reflected from the finger. The acquired
video data are preprocessed for machine learning (ML) and deep neural networks
(DNNs) to classify blood plasma glucose levels. The standard finger-prick method is
used as a reference for blood glucose level classification.

Results: The study found that the noncontact speckle-based blood glucose meas-
urement system with AI data processing allows for the detection of blood plasma
glucose levels with high accuracy. The ML approach gives better results than the
tested DNNs as the proposed data preprocessing is highly selective and efficient.

Conclusions: The proposed noncontact blood glucose sensing mechanism utiliz-
ing AI data processing and a magnetic field can potentially improve glucose detec-
tion accuracy, making it more convenient and less painful for patients. The system
also allows for inexpensive blood glucose sensing mechanisms and fast blood glu-
cose screening. The results suggest that noninvasive methods can improve blood
glucose detection accuracy, which can have significant implications for diabetes
management. Investigations involving representative sampling data, including sub-
jects of different ages, gender, race, and health status, could allow for further
improvement.
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1 Introduction
Glucose is one of the essential molecules that creates energy in the human body. Glycolysis is a
metabolic pathway that breaks down glucose to pyruvic acid, releasing energy. Glucose is trans-
ported from the small intestine to the villi and into the bloodstream. Oxygen and glucose are
carried by the bloodstream and taken up by the bodily cells. Insulin is a hormone that moves
glucose into the cells for the metabolic pathway.1,2 A high glucose level in the blood is a meta-
bolic disease called diabetes mellitus. Diabetes patients must regularly check their blood glucose
levels to remain within a healthy range. The fast and efficient evaluation of blood glucose con-
centration requires the development of new measurement methods for which accuracy, depend-
ability, high sensitivity, quick reaction, cheap cost per test, mobility, and a noninvasive procedure
are significant factors.2

The initial technique for measuring blood glucose concentration depends on glucose’s
capacity to function as a reductant in the copper iodine solution, known as the “copper-iodo-
metric method.” The “enzymatic method” is a different technique for measuring glucose. The
catalytic activity of the enzymes is a critical component of enzyme-based glucose detection
techniques. From the fundamentals of the “copper-iodometric method,” “non-enzymatic glucose
sensors” containing metal electrodes were later developed. High-performance liquid chromatog-
raphy is also a helpful tool for separating and identifying chemical components of organic
material, including glucose. The current method of measuring blood glucose involves skin-
punching a finger to extract a blood droplet that is then placed on a strip and into a glucometer.
All of these methods require blood extraction, which is painful and time-consuming.1–3

The advantage of the noninvasive methods is that puncturing the skin and drawing blood,
which causes pain or trauma to the patient, is not required. Over time, several noninvasive tech-
niques have been developed, as shown in Table 1. Transdermal measurements are noninvasive
techniques for evaluating blood glucose. These technique involve using chemicals, electricity, or
ultrasound to draw glucose through the interstitial fluid. The most noninvasive glucose monitor-
ing techniques are made to identify the optical signature of blood glucose in which the light
focused on biological tissue either transmits, scatters, or reflects depending on the sample’s struc-
tural and chemical components.

Table 1 provides an overview of several non-invasive techniques for measuring blood glu-
cose levels. Each technique has its own strengths and limitations. Near-infrared spectroscopy
(NIRS) and mid-IR (MIR) are the most common noninvasive glucose measurement methods.
Near-infrared light scatters less than ultraviolet or visible light. It can be detected and measured
using reflection and transmission and has a relatively high capacity to enter bio fluids and soft
tissues.4,6 NIRS utilizes the focused laser beam to determine glucose concentration in the tissues
by tracking variations in light intensity produced by transmission and reflection in the tissue.7

The method has significant limitations affecting physicochemical characteristics, including body
temperature, skin pigmentation, and blood pressure variations. Blood glucose levels and NIR
measurements from the finger are correlated, but the clinical acceptability of these measurements
was unsatisfactory. Higher wavelengths used in MIR spectroscopy have a reduced scattering
and higher absorption. More distinct MIR spectral bands compared with NIR are generated by
glucose. However, due to extremely low penetration and selectivity, light encounters the same
limitations as NIR because it only penetrates the skin for a few millimeters.4,7

Raman spectroscopy is also considered one of the most effective techniques for measuring
blood glucose levels. The Raman method uses a monochromatic light source that ranges from
visible to MIR based on the Raman effect. A tissue sample illuminated by monochromatic light
results in scattered rays flowing in all directions. Most of the rays have a wavelength similar to
incident light. The interaction of the remaining beams with the tissue sample, which causes rota-
tion and vibration, results in inelastic scattering, also known as Raman scattering, with wave-
lengths distinct from the input light. The Raman shift is the resultant difference in the wavelength
reflecting bodily fluids’ rotational and vibrational states. Raman spectroscopy has many appli-
cations, including a higher penetration depth than MIR and high specificity. However, a longer
spectrum capture time is necessary, and the laser intensity and wavelength instability also impact
the measurements.4,6,10

Instead of directly detecting glucose, fluorescent sensing technology analyzes the signals of
molecules that can reversibly mix with glucose. Because glucose molecules’ fluorescence is too
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weak, it can easily interfere with the direct fluorescent properties. As a result, most studies con-
centrate on indirect fluorescent labeling, which involves adding a fluorophore to bind to glucose
molecules. Only then will fluorescence be emitted, indicating the presence of glucose molecules.
This method makes measurements possible, and changes in light intensity do not affect the sig-
nal. However, several factors, such as skin pigmentation, degree of erythema, and epidermis layer
thickness, affect the fluorescence intensity.6,10 Optical coherence tomography (OCT) has a high
resolution and can measure glucose in specific tissue layers, but it has a limited penetration depth
and requires specialized equipment. Photo acoustic spectroscopy (PAS) is highly sensitive and
measure glucose in specific tissue layers, but it has a limited penetration depth and requires
expensive equipment. Impedance spectroscopy is low cost and measures glucose continuously,
but it is affected by temperature and humidity and requires frequent calibration. Microwave spec-
troscopy and thermography are able to measure glucose continuously, but they are affected by
changes in tissue water content and skin temperature, respectively. Sweat-based glucose mon-
itoring allows for continuous measurement; it is affected by skin temperature and sweat rate, and
its sensitivity may not be high enough for some applications. None of these methods have pro-
duced a device equivalent in its features to the current invasive device. Some methods were only
tested in the laboratory using glucose solution samples and have not been tested in-vivo.4–8,10–13

A new noninvasive method remotely monitors medical parameters using temporal analysis
of secondary speckle patterns generated by reflected light from the human skin illuminated by
a laser beam. Numerous biomedical measurements techniques have already been successfully

Table 1 Comparison of non-invasive techniques for blood glucose monitoring.

Technique Methods used Comments References

NIRS Transmittance, reflectance,
and diffuse reflectance

Fast, accurate, and widely available.
Sensitive to interference from ambient
light, affected by skin pigmentation, and
limited penetration depth.

4 and 5

Raman
spectroscopy

Raman scattering and
surface-enhanced Raman
scattering (SERS)

Accurate and able to distinguish glucose
from other analytes. Limited penetration
depth and requires expensive equipment.

4 and 6

Fluorescence
spectroscopy

Intrinsic and extrinsic
fluorescence, time-resolved
fluorescence

Sensitive and able to distinguish glucose
from other analytes. Limited penetration
depth and may cause tissue damage.

4 and 6

OCT OCT High resolution and able to measure
glucose in specific tissue layers. Limited
penetration depth, expensive, and
requires specialized equipment.

4 and 6

PAS Photoacoustic effect High sensitivity and able to measure
glucose in specific tissue layers. Limited
penetration depth requires expensive
equipment.

4 and 6

Impedance
spectroscopy

Electrical impedance
spectroscopy (EIS),
bioimpedance analysis
(BIA)

Low cost and able to measure glucose
continuously. Affected by temperature
and humidity and may require frequent
calibration.

4 and 7

Microwave
spectroscopy

Microwaves Able to measure glucose continuously.
Affected by changes in tissue water
content and limited penetration depth.

4 and 8

Thermography Thermal imaging Low cost and able to measure glucose
continuously. Affected by changes in skin
temperature and limited accuracy.

4 and 9

Sweat-based
glucose
monitoring

Sweat analysis Continuous measurement possible and
low-cost. Affected by skin temperature,
sweat rate, and sensitivity may not be
high enough for some applications.

4 and 6
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developed using this method, such as blood pulse pressure, heart rate, breathing rate, blood
coagulation, blood oxygen saturation, intraocular pressure, and glucose measurements.2,3,9,13–16

Our previous work proposes a non-invasive technique for sensing glucose concentration in the
bloodstream using a multimode fiber-based sensor. The multimode fiber (covered and uncov-
ered) touching the subject’s finger under a magnetic field is applied to detect the glucose
concentration. The uncovered fiber placed below the finger under an alternating current (AC)
magnetic field (150 Gauss) at 140 Hz was found to have a lock-in amplification role, improving
glucose sensing.17 The current work further develops the speckle-based noninvasive blood glu-
cose sensing combined with data processing by machine learning (ML) and deep neural network
(DNN) analysis. The AC-induced magnetic field at a particular frequency improved the selec-
tivity of blood glucose detection. The recorded secondary speckle pattern data are preprocessed
and modified to acquire the lock-in amplification in glucose data at a particular frequency of the
applied magnetic field. ML and DNN analysis improve the accuracy of blood glucose sensing.
Although the present study achieved high accuracy, the experimental system still requires mod-
ifications for onsite or online monitoring of glucose levels. Other researchers have explored more
integrated systems, such as planar waveguide sensors18 and evanescent waveguide sensors,19

which may offer improved sensitivity and selectivity. However, the mentioned sensors have not
been configured for the field application or tested in vivo. Evaluating glucose concentration indi-
cates a possible application for diabetes monitoring. To allow for the onsite/online monitoring,
we are planning to build a compact hand bracelet containing a magnetic field source, laser, and
a camera for non-invasive blood glucose sensing. The bracelet will connect Bluetooth with a
cellular phone for data recording and online transmission.

2 Theoretical Background

2.1 Speckle Pattern Analyses
Secondary speckle patterns are self-interfered random patterns created by a laser-induced coher-
ent light reflected from a rough surface. Speckles can be a point of reference to monitor changes
in the scattered light’s phase where the low-coherence light with different wavelengths is con-
sidered for analysis. In that situation, a speckle pattern will not typically be seen because the
speckle patterns created by different wavelengths normally average each other out, which his
known as self-interference.16,17

In our proposed sensing mechanism, the secondary speckle patterns reflected from a human
skin illuminated by coherent light are captured using a defocused camera for temporal analysis.
Instead of changing randomly while the camera is defocused, a speckle pattern will move or
vibrate in the transversal plane. The speckle pattern is randomly varied because there are three
types of movement co-occurring: transverse, axial, and tilt. Those three types of movement can-
not be separated in a soft medium (such as a tissue). After making the necessary approximations,
it was considered that the two types created hardly any differences in the acquired speckle pat-
tern. The third type is the object’s tilting, which is expressed as shifts in the pattern of speckles,
as we can see in the light distribution.13,19,20

Therefore, the overall effect of the three types of movement is only a shift in the transversal
plane. The speckle patterns’ temporal trajectories are proportional to the signals to be extracted,
the frequent change in the blood vessels, and the interaction between the coherent light and the
illuminated surface, such as human skin affecting recorded speckle patterns.13,15,16,20

2.2 Speckle-Based Blood Glucose Sensing
Blood has four main components: plasma, red blood cells (RBCs), white blood cells, and plate-
lets. Blood has many different functions, including transporting oxygen and nutrients to the lungs
and tissues and forming blood clots to prevent excess blood loss.

Blood plasma occupies around 50% of the blood volume, containing 92% water, 7% pro-
teins, 0.5% inorganic salts, and 0.07% to 0.1% glucose. It mainly comprises coagulants, fibrino-
gen and aid in blood clotting. Plasma proteins such as albumin and globulin help maintain the
colloidal osmotic pressure at about 25 mmHg. The red blood cells - erythrocytes (RBCs) consist
of hemoglobin (Hb), the iron-binding proteins in the Fe 3+ state, and are responsible for oxygen
transfer. Water in the plasma consumes a considerable portion of the transmitted light compared
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with additional components. Glucose absorbed into the blood is found in the blood plasma and is
combined with erythrocytes. Blood glucose is mainly controlled by evaluating its concentration
in plasma, which is food intake dependent and undergoes fast temporal variation. Glucose dis-
solved in the blood plasma also binds to Hb in RBCs, forming glycosylated hemoglobin
(HbA1c), which remains stable in the RBCs for three months and is an indicator of average
blood glucose concentration over that period.21,22

When a laser beam illuminates the human skin, it is reflected from the surface while partially
penetrating through the skin barrier and interacting with the blood and its components, including
plasma and Hb. Therefore, the captured speckle patterns using the defocused camera could reflect
the blood characteristics, including the glucose concentration.

The magneto-optic effect that Faraday first observed is used to measure changes in the opti-
cal properties caused by the concentration of glucose in the blood. Applying an AC magnetic
field to the skin causes blood plasma glucose polarization, which affects the reflected secondary
speckle patterns. The Faraday effect happens when linearly polarized light undergoes rotation
when passing through a material medium in the presence of a magnetic field. This leads to cir-
cular birefringence, which causes the left and right waves to propagate at different rates due to
the magnetic field’s influence. As a result, the speckle pattern changes as the polarization state of
the wavefront changes, and this polarization state changes as the glucose concentration changes.
Laser speckle imaging is used to measure the change in polarization properties and quantify
blood glucose levels. In addition, the glucose concentration affects the blood pulse stream,
including the tilt of the skin affecting the speckle patterns.2,3,13,23

A light beam’s polarization rotation angle φ changes as it passes through magneto-optic
materials, and it is given as14,22

EQ-TARGET;temp:intralink-;e001;117;460φ ¼ VBL ¼ πLBΔn
λ

; (1)

where V is the Verdet constant, B is magnetic field strength, L is the length of interaction, λ is the
optical wavelength, and Δn is the rotation of light caused by the difference in the index of refrac-
tion between two circularly polarized states. Due to the low Verdet constant of most materials,
weak magnetic fields only produce small rotations. Because of the large Verdet constant of the
glucose molecule in comparison with molecules of other bloodstream components, we can
assume that the interaction occurs primarily with the glucose dissolved in the plasma.2,3,13,23,24

The magnetic rotatory power is commonly called Verdet’s constant and is given as

EQ-TARGET;temp:intralink-;e002;117;343V ¼ φ

LB cos α
; (2)

where φ is the rotation of the polarization plane, which occurs in a path of length L; B is the
magnetic field’s strength; and α is the angle between B and the path of the light.3,13,25

For a given propagation distance L inside the medium, Eq. (1), which gives the change in
the optical path, is used to calculate the minimal magnetic field intensity, causing decorrelation.
As demonstrated before, the lowest magnetic field (Bmin) strength required to decorrelate the
speckle area is proportional to the following:2

EQ-TARGET;temp:intralink-;e003;117;239Bmin ∝ πLRφ; (3)

where R is the illumination beam’s radius, which is a measure of the size of the laser beam.
Equation (3) specifies the proposed method’s ability to detect magnetic fields.2,13,23

The premise that the laser beam interacts with the blood’s glucose depends on the Beer-
Lambert law. The human finger has three main layers: skin, adipose, and bone. In the adipose
layer, blood vessels in the human finger variate in diameter (800 μm ∼ 1.8 mm). The skin thick-
ness is about 2 mm. The adipose layer between the skin and the blood vessel has a thickness of
about 1-2 mm.26,27 The penetration of the laser into the finger interacts with the blood and gets
reflected, showing the glucose profile, as demonstrated in Fig. 1.When the laser is positioned
correctly, the light gets through only the skin and adipose in the worst scenario. Beer-Lambert’s
law states that the attenuation of light is inversely related to the sample’s thickness and compo-
nent concentration, given as
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EQ-TARGET;temp:intralink-;e004;114;504A ¼ ln

�
I
I0

�
¼ ε × C × d; (4)

where A is the absorbance, ε is the coefficient of molar attenuation, C is the amount of the absorb-
ent elements present, and d is the path length of light through the sample. I is the intensity of
incident light, and I0 is the transmitted light intensity. Absorbance usually refers to absorption,
scattering, and reflection. Our system assumes the reflection after the light interaction with the
blood vessels. Therefore, our path length is double.24–26,28

The noise overlapping the Faraday effect is reduced using the AC magnetic field applied at a
fixed frequency (we used 140 Hz), creating a magneto-optic effect on blood glucose. The mag-
neto-optic effect produces a lock-in amplification that makes it possible to monitor blood glucose
levels precisely. If the acquired data are inferred at that frequency and analyzed using ML and
DNNs, blood glucose detection can be highly selective and sensitive.3,13

However, the movement of Hb under the influence of a magnetic field also affects the
recorded speckle patterns. When exposed to a magnetic field, Hb experiences a force due to
its diamagnetic properties and resistance related to the plasma viscosity. This force causes the
Hb molecules to oscillate within the plasma, altering the way in which light is transmitted. We
also found reports that the blood plasma viscosity is slightly related to glucose concentration.
Variation of blood plasma glucose from 100 to 400 mg∕dl could increase the viscosity by 25%.
Therefore iron-containing Hb, oscillating under the AC magnetic field within the plasma, could
be affected depending on the applied frequency. It could also affect the recorded speckle patterns.
The glycosylated Hb remains stable during the testing period and has a minimal effect on plasma
blood sensing.29

3 Experimental Setup
A green laser (wavelength of 532 nm), a Basler camera with defocused optics, a magnetic field
inductor, and a computer make up the setup for blood glucose measurement. The solenoid in the
inductor is powered by a 12V DC battery supplying the UBL amplifier to boost the AC generated
by the Tektronix pulse generator. The pulse generator’s frequency was set at 140 Hz. To store and
process the speckle pattern recordings, the camera is connected to a computer. While the sub-
ject’s finger is partially inserted into the solenoid, the camera records the speckle pattern images
reflected from a finger illuminated by a laser beam, at 500 frames per second (See Figs. 2 and 3).

Six healthy humans, ages 18 to 75, participated in our trial. Each participant was tested for
two cases: (a) low glucose concentration after 12 hrs of fasting and (b) a series of relatively high
glucose concentrations after a meal. The reference base true glucose levels were measured for
each subject using the traditional finger-prick method before each recording of speckle patterns.

Fig. 1 Skin-laser beam interaction.
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To reduce motion artifacts in the glucose measurement, we stabilized the participants and setup
and repeated the tests for five times, resulting in accurate measurements. The acquired speckle
data were recorded under normal conditions and a magnetic field (150 Gauss) induced by 140 Hz
AC to analyze the blood glucose concentration. AGM2 Gauss meter measured the magnetic field
strength. To demonstrate the superiority of the magneto-optic effect over direct speckle pattern
analysis, the data without a magnetic field were used as a baseline for performance comparison.
This comparison highlighted the effectiveness of the magneto-optic effect in accurately differ-
entiating glucose levels.

Fig. 3 Experimental setup for blood glucose sensing.

Fig. 2 Schematic setup for noninvasive blood glucose sensing.
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The recorded video data were preprocessed and modified to detect and classify blood
glucose under normal and AC magnetic field conditions. The DNN data preprocessing is imple-
mented by calculating the pixel-wise difference between two consecutive images. By contrast,
ML algorithm data preprocessing is done by conversion of data in time series 2D movement
using statistical methods. The preprocessed series of image input data for the DNN is normalized
to make it optimal for a convolution-based network. The ML data are modified in time series
form, which is further modified for the case of applied AC magnetic fields to infer data at
an applied frequency.17 Each person was tested several times during each session to increase
the variability in data.

4 Blood Glucose Concentration Prediction Models
Artificial intelligence (AI) for optical sensors has been increasingly common recently, particu-
larly for tracking and boosting the accuracy of optical sensors for better performance. We modi-
fied and tested ML and DNNs models for blood glucose classification using the recorded data to
find the best model. The recorded speckle pattern data are modified and preprocessed based on
the model input type, which will be advantageous in detecting blood glucose accurately. In the
case of DNNs, the input data, under normal conditions and an AC-induced magnetic field, is
processed similarly, creating a modified image series input data, which is explained in Sec. 4.1.
ML algorithms use input data in time series 2D form, implemented under normal conditions and
and with an ACmagnetic field applied. Further, with the influence of the AC magnetic field at the
applied frequency (140 Hz), the magneto-optic effect creates a lock-in amplification that helps to
precisely detect blood glucose. The process of converting recorded speckle images in time series
and selecting the data only at 140 Hz is discussed in Sec. 4.2.

4.1 Data Processing for Deep Neural Networks
A component of AI techniques based on learning data features is deep learning. DNNs handle
data in intricate ways using a sophisticated mathematical model. The input data used for training
is modified to optimize the performance. The dataset of recorded videos was acquired and pre-
processed for use in Matlab for training our model. Each acquired video, specified by its file-
name, represents a particular glucose level. The original data contain 162500 128 × 128 size
frames; each video consists of 2501 frames recorded over 5 s. Each video has a distinct identity,
including the glucose level under normal conditions with the ACmagnetic field at 140 Hz and the
actual reference blood glucose level. The images were taken from each video in the data pre-
processing and saved as four-dimensional tensors (also known as multidimensional arrays) into
a single Matlab file, which contains image data in rows to read data quickly and effectively.

To extract the temporal speckle pattern variation for different glucose levels, we use data-
stores, which act as a repository for data having the same structure and formatting. The pixel-
wise difference between two subsequent images is calculated per video from datastores, as shown
in Fig. 4. To further modify the input data suitable for the DNN model, the preprocessed images
are normalized and scaled. The normalized data with the series of images indicating different

Fig. 4 (a) and (b) Speckle patterns in two consecutive frames and (c) pixel-wise difference
between two consecutive frames.
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glucose levels in the feature vector extracts features from each frame using a convolutional-based
neural network (CNN). A CNN’s network architecture is improved and modified for optimal
performance to produce the best results. Figure 5 presents the final network architecture repre-
senting the blood glucose detection flow chart. It uses the sequences to train a long short-term
memory (LSTM) network to predict glucose levels.

In the learning process, the model generalizes the classification of glucose levels from the
given dataset. First, the challenge of classifying optimally from the dataset is represented, so the
model learns complex and accurate decision rules. To prevent overfitting, 30% of unused data is
kept aside to check whether the model provides meaningful information and a precise decision.
To prevent overfitting, dropout techniques, in which arbitrary units are thrown out throughout the
training to prevent strong mutual dependencies between units, are used. This deep learning
approach offers many benefits when dealing with series image input data. The model transforms
a batch of image sequences into a batch of images by employing a sequence input layer, followed
by a folding sequence layer. The convolutional layers extract features by calculating the dot
product between the input image and each pixel entry making up the filter. Convolutional oper-
ations classify blood glucose levels, so each layer identifies unique visual elements from each
frame. To categorize the obtained vector sequences and classify glucose levels, we included the
LSTM layers followed by the output layers. A sequence unfolding layer and flattened layer were
employed to recover the sequence structure and reformat the output into vector sequences. The
DNN model is trained and optimized in Matlab, with an initial learning rate and gradient thresh-
old of 0.0001 and 2, respectively. The mini-batch size was set at 16, and the data were shuffled at
every epoch using the deep network designer that assisted in calculating N-dimensional arrays.

4.2 Data Processing for Machine Learning
ML algorithms were applied to classify blood glucose levels. The recorded video data contain
temporal speckle pattern variations that need preprocessing and modification to extract features
for classification using ML algorithms. The preprocessing is done using spatial pattern corre-
lation analysis, which allows for tracking the relative shift of the speckle patterns of the two
sequential frames to extract the total movement vector related to blood glucose concentration.
The cross-correlation of the speckle pattern images is used to determine displacement across
the X and Y axis. Each speckle image is correlated to the next image, and for each image, the
correlation between the current and reference frames is calculated and averaged over time.17

The temporal variation of the graph peaks correlation value represents the changes in glucose
levels. The data under normal conditions are directly used to train the algorithm. By contrast, the
data under the 140 Hz AC-induced magnetic field are obtained using the fast Fourier transform
(FFT) to transform the time series data into the frequency domain. By choosing our frequency of
interest (140 Hz) from the FFT and using Matlab to eliminate any remaining frequency compo-
nents, we can obtain the fluctuation only at 140 Hz. We used inverse FFT (IFFT) to recover time
series data with variation only at 140 Hz.17 The obtained IFFT data comprise signals at a specific
glucose level and are free from external noise. After being normalized, the preprocessed data are
used as input to classify the glucose levels.

Each reference blood glucose level used in this study represents a vector with one row and
500 columns, ranging from 70 to 198 mg∕dL. The preprocessed data are normalized and split for

Fig. 5 DNN blood glucose detection flow diagram.
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the training and testing by the selected algorithm. In a previous study,9 we found that the opti-
mized support vector machine (SVM) algorithm performed better for AC-induced magnetic field
data at 140 Hz than KNN, logistic regression, and decision trees. The model’s performance is
improved by optimizing hyperparameters using a Bayesian optimizer. We implement five-fold
cross-validation in which the dataset is randomly divided into five folds to prevent the algorithm
from overfitting. Using the data from the first four folds, an ML model is trained, and its per-
formance is analyzed on the validation set (fifth fold). The process is repeated until every five
folds are implemented as a training set. The average prediction accuracy is calculated from the
five different validation sets for each hyperparameter value. The best value for the hyperpara-
meter is determined by analyzing the averaged prediction accuracy, resulting in increased model
classification speed and improved model performance; see Fig. 6.

5 Results
Preliminary tests were conducted and analyzed to select the optimum frequency and magnetic
field intensity for better glucose sensing. The glucose levels (normal and high) were analyzed
under varying magnetic fields and operating AC frequencies. The 60, 90, and 140 Hz frequen-
cies were analyzed using magnetic field strengths of 60, 120, and 150 Gauss. The magnetic
field amplitude and frequency were selected by testing a range of frequencies that covered the
available range of our setup. We observed that positive results were not obtained for 150 Gauss
at 60 Hz, but we obtained significant results for 90 and 140 Hz. However, further analysis of
90 Hz and 140 Hz frequencies under 60 and 120 Gauss showed less accuracy than obtained
under 150 Gauss. We concluded that higher magnetic field strength enhances the magneto-
optic effect, leading to better glucose sensing. Moreover, we observed that 140 Hz gave better
results than 90 Hz under a 150 Gauss magnetic field. Our primary aim was to demonstrate
the possibility of detecting blood glucose by removing noise components using a particular
frequency.

The analysis was done using an ML-based classification algorithm,9 explained in Sec. 4.2.
The preliminary analysis gives the idea of selecting the optimum magnetic field of 150 Gauss and
140 Hz frequency. However, more advanced optimization analysis is required for better perfor-
mance. After selecting the basic parameters, the experiments were conducted using our setup
discussed in Sec. 3. Six healthy participants, ages 24, 25, 27, 28, 60, and 75, provided data for
analysis. All glucose level detection experiments are performed in a controlled environment to
achieve accurate, reproducible measurements and to minimize external environmental factors.
The experiment involved measuring the subject’s blood glucose level using the traditional
finger-prick method as a reference baseline, followed by testing with the optical setup. The tests
were conducted in the morning after 12 hrs of fasting to standardize the low glucose level and
then after a single meal to obtain glucose level variations over subsequent time intervals of 35 to
50 mins. Each participant was tested around 8 to 10 times, with 2-3 tests before and 6-7 tests after
the meal to measure different glucose levels. To ensure accuracy, each measurement was repeated
five times. The 13 glucose levels were selected from the combined measurements to reduce
complexity and allow for a more focused and detailed analysis. This simplified the data analysis
process, making it easier to draw accurate conclusions from the experiment. As illustrated in
Fig. 2, the finger was partially placed into the solenoid, and the secondary speckle patterns were

Fig. 6 ML-based blood glucose detection by SVM algorithm – flow diagram.17
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recorded to determine the blood glucose levels. The strength of the magnetic field was kept
stationary (150 Gauss) and measured prior to every blood glucose level measurement. A shift
of finger placement was performed for each reading to obtain variable data. The speckle patterns
were recorded five times in a row for each glucose level. The subjects’ reference measurements
are listed in Table 2. As explained, the measurement was done under normal and AC-generated
magnetic fields.

The acquired data consist of 128 � 128 pixel images. Using MATLAB code, each speckle
image is cross-correlated to the following frame for the DNN data input. The current and refer-
ence frame’s correlation was determined for ML and averaged across time, as explained in Sec. 4.

5.1 Evaluating Glucose Detection Accuracy Using a DNN
Our optimum network was tested using unseen data (testing data) gathered from the same six
participants, and the data were not included during the training process. Table 2 provides the
reference glucose level readings for each person evaluated. The data were split randomly with
70% of the videos used for training and the remaining 30% used for testing. Each recording was
analyzed under a 140 Hz AC-induced magnetic field and without it (the normal condition). The
accuracy of the DNN networks was tested, and finally, the CNN model architecture was selected,
as shown in Fig. 5.

As seen in Table 3, other critical performance metrics of our network, such as accuracy,
sensitivity, and F1 score, are computed. The F1 score represents the standard measure to rate
a network’s success using each class’s weighted average of precision and recall using the
following equations:

EQ-TARGET;temp:intralink-;e005;117;395F1 ¼ 2 ×
precision × recall

precisionþ recall
; (5)

where:

EQ-TARGET;temp:intralink-;e006;117;347Precision ¼ TP

TPþ FP
; Recall ¼ TP

TPþ FN
; (6)

where TP, FP, and FN are true positive, false positive, and false negative, respectively. The aver-
age F1 score of 0.8935 is calculated for assessing the network glucose prediction performance.
CNN shows higher accuracy and the ability to identify various glucose levels. The optimized
model that we achieved gives an accuracy of 89.9% on the testing dataset, with a magnetic field
(150 Gauss) at 140 Hz, as shown in Fig. 7. Figure 8 represents the training procedure for
our CNN. For training preprocessed images in a network, each image was treated individually,
which means other images coming after or before or even belonging to the same recorded video
do not affect the network performance.

Additionally, a low degree of false positive (FP) and false negative (FN) rates may be seen in
the confusion matrix (CM), demonstrating the model’s validity and capacity to handle different
types of data noise. Figure 9 shows the CM determining the model accuracy of the classification
results for each glucose level. The number of iterations for training our network is displayed in
Fig. 8, representing the longer training duration compared with ML. The training saturation is at a

Table 3 CNN model processing results.

Configurations Accuracy Precision Sensitivity F1 score

AC-induced magnetic field 89.99% 0.9064 0.8932 0.8935

Normal condition 71.35% 0.7689 0.7431 0.7350

Table 2 Reference blood glucose levels for the tested participants.

Sample No. 1 2 3 4 5 6 7 8 9 10 11 12 13

Glucose level (mg/dl) 86 89 92 93 96 105 113 125 135 137 146 177 198
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relatively slow stage of the training process, according to an analysis of the network’s perfor-
mance. The network performance can be enhanced using more convolution layers and advanced
dataset analysis to increase the training accuracy.

5.2 Evaluating Glucose Detection Accuracy Using ML
The speckle data for the ML algorithm are converted into time series, as explained in Sec. 4. The
data under a magnetic field at 140 Hz are filtered, which is highly selective based on different
glucose levels. The optimized model increases the algorithm’s ability to classify the testing data.
Figure 12 illustrates the evaluation of the SVM classifier, which gives the best accuracy com-
pared with other classification algorithms, as explained in Sec. 4.2. To see how well the classifier
performs, we compared the true class labels to the predicted class labels using the confusion
matrix. The confusion matrix’s diagonal elements represent the correctly categorized data sam-
ples. The matrix helps to visualize the accuracy of data classification for various glucose levels.
Table 4 presents the processing results of the ML algorithm used. The table shows the accuracy,
precision, sensitivity, and F1 score.

The accuracy of blood glucose level detection has significantly increased under the AC-
induced magnetic field at a lock-in frequency of 140 Hz, as illustrated in Fig. 10. Figure 11
depicts the training procedure for our optimized SVM algorithm representing a very low clas-
sification error in significantly fewer iterations compared with CNN. The trained algorithm
performance was analyzed using the testing data for blood glucose classification. The confusion
matrix shows the classification accuracy of different glucose levels in Fig. 12. Table 4 includes
the accuracy of 97.3% for the AC magnetic field derived from the confusion matrix for

Fig. 8 Training process of optimized CNN.

Fig. 7 Accuracy of blood glucose classification using CNN.
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classifying various glucose levels. The F1 score demonstrates a higher accuracy and ability to
identify different glucose levels, with an average F1 score of 0.966.

Additionally, the precision and sensitivity for each glucose class are calculated and averaged.
The results are presented in Table 4, indicating the effectiveness of the magneto-optic technique
combined with the ML algorithm in accurately classifying blood glucose levels. The magneto-
optic effect under the AC-generated magnetic field at a fixed frequency reduces the external noise
by being highly selective, thus improving the overall sensitivity for detecting changes in the
glucose concentration.

Table 4 ML algorithm processing results.

Configurations Accuracy Precision Sensitivity F1 score

AC-induced magnetic field 97.3% 0.9752 0.9753 0.9660

Normal condition 61.4% 0.6616 0.6394 0.632

97.30%

61.40%

0.00%
20.00%
40.00%
60.00%
80.00%

100.00%
120.00%

Magnetic field No magnetic Field
Accuracy

Fig. 10 Accuracy of blood glucose classification using SVM.

Fig. 9 Confusion matrix of CNN testing data.
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6 Discussion and Conclusion
This work presented a novel method for noninvasive human blood glucose sensing using an
indirect approach that extracts the blood glucose level from reflected laser speckle pattern record-
ings taken under normal conditions and under an AC magnetic field inferred at a fixed frequency
to develop the magneto-optic effect. The system consists of a laser source to illuminate the finger
skin, a digital camera that recorded the patterns of reflected speckles, a magnetic field inductor,
and a computer with Matlab. The magneto optic effect showed an improvement in blood glucose
level identification.

The use of advanced AI methods DNN and machine learning (ML) techniques allowed for
the classification of blood glucose levels with high precision. The classification models were
optimized after selecting the best hyperparameter value to predict glucose levels. The optimized

Fig. 12 Confusion matrix of SVM algorithm training data.

Fig. 11 Optimized SVM classification algorithm’s training procedure.
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model gives improved and accurate results. We designed a CNN model adapted to analyze image
data to perform the classification from the direct secondary speckle patterns analysis. In ML, the
speckle pattern data were modified to the temporal shift in 2D time series data before the model
application.

Experimental result have shown the viability of remote blood glucose levels classification
by analyzing laser-induced speckle patterns reflected from human skin while being subjected to
an AC magnetic field. The choice of the AC frequency is crucial in this method. Following
preliminary experiments at various operating frequencies (60, 90, and 140 Hz), the 140 Hz fre-
quency was chosen as it produces better results by maintaining the maximum stable magnetic
field of 150 Gauss throughout the experiment. Increasing the magnetic field strength can further
enhance the accuracy of the detection. However, due to the limitation of the setup, we kept the
magnetic field strength at 150 Gauss. The direct approach of the finding glucose concentration
from the recorded speckle pattern using the magneto-optic effect enhances the highest detection
accuracy of 97.3% in the ML case due to the preprocessing of acquired data, which is highly
selective at the inferred frequency. In the future, the AC-induced magnetic field inferred at an
optimized frequency can be extracted more efficiently using advanced image feature extraction
techniques.

The accuracy of the DNN model, which currently stands at around 90% has the potential
for further improvement. This is because the speckle pattern images contain more information
compared to the 2D data used in ML model, leading to a partial data loss. A large-scale sampling
study will allow for further improvement of blood glucose classification accuracy.

This study presents a promising approach for noninvasive blood glucose monitoring using a
magneto-optic effect and AI techniques. Our optical system’s sensitivity was determined by the
ratio of the change in sensor output to glucose concentration, and we achieved a sensitivity of
1 mg∕dl for glucose levels ranging from 86 to 198 mg∕dl with a sampling volume of 2501
frames taken under a sampling rate of 500 FPS. However, it is difficult to directly compare the
sensitivity of the different methods shown in Table 1 because they have different measurement
principles and units. Further investigation is required to validate our results, especially in terms of
the limit of detection and optimal sampling rate of our technique. We believe that, with improve-
ments in the experimental setup, building a bracelet based prototype connected to a smartphone,
and the use of more advanced AI methods, the accuracy and feasibility of our proposed approach
for onsite or online monitoring of blood glucose levels can be enhanced. Overall, our results
demonstrate the potential of our optical system for accurate and noninvasive glucose level
monitoring, which can have significant implications for the management of diabetes and other
related conditions.
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