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Abstract

Significance: The combination of reflectance and fluorescence spectroscopy allows the deter-
mination of tissue optical properties and the calculation of the intrinsic fluorescence in vivo.
These parameters can discriminate between tissues and may allow the discrimination of malig-
nant from benign tissue. While this approach has significant clinical potential, the lack of stand-
ardization and quality assessment prevents the upscaling of research.

Aim: Investigate which factors influence device calibration and tissue optical property determi-
nation. Improve system quality assessment and allow upscaling of the clinical research using
multidiameter single fiber reflectance/singe fiber fluorescence spectroscopy.

Approach: Two studies, one phantom based on uniform calibrations and skin measurements and
a clinical study including clinical calibrations. The first validates the effect of factors under
identical conditions and the effect of calibration quality on the optical property determination
of skin. The second shows the effect of different system configurations and the performance of
the system and probe over an extended period.

Results: Phantom calibrations showed stability over a period of 20 weeks except for a 16-week-
old intralipid phantom which showed a significant difference (at least p = 0.0032) for all five
probes evaluated. For clinical calibrations, only the fiber tree had a significant influence (probe 4:
p < 0.000001 and probe 5: p = 0.00038) on the calibration quality. Interestingly, no degradation
of probe performance was detected over a period of 21 months despite the exposure to stress
during clinical measurements. Calibration quality affected ] and the power law scattering expo-
nent, but the degree of the influence was different per fiber.

Conclusions: Intralipid phantom quality and fiber tree performance are the main factors influ-
encing the calibration quality. Probe and user performance did not show any effect, which makes
the upscaling of research to multicenter trials easier. A high-quality assessment procedure should
be implemented to track changes during clinical trials.
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1 Introduction

Reflectance spectroscopy provides information about tissue-specific absorption and scattering
optical properties. Differences in tissue optical properties can be used to differentiate between
tissue types, and may, for example, allow the identification of malignant and benign tissue.'
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Also, fluorescence spectroscopy has the potential to differentiate tissues based on their fluores-
cent properties but is often limited because it is strongly affected by the effects of background
tissue optical properties that prevent quantitative fluorescence measurements. By combining
both types of spectroscopies, the fluorescence signal can be corrected for the tissue’s optical
properties, to yield the intrinsic fluorescence. This intrinsic fluorescence is an important param-
eter for clinical studies to compare the fluorescence intensity objectively within and between
patients. It enables, for example, the determination of optimal tracer doses and the quantification
of tumor-to-background ratios. The effect of different tracer doses can be evaluated in vivo with-
out the distorting influence of the tissue, and by using targeted fluorescent tracers, tumor-to-
background ratios can be used to make a distinction between benign and malignant or between
inflamed and non-inflamed tissue.*® Although reflectance and fluorescence spectroscopy have
great clinical potential, the lack of standardization and quality assessment of the system over
time prevents upscaling of clinical research like multicenter trials using multiple devices.

In this study, we evaluated the sources affecting a custom-made multi-diameter single fiber
reflectance/single fiber fluorescence (MDSFR/SFF) system. Quantitative MDSFR/SFF spectros-
copy enables the extraction of tissue absorption and scattering properties (MDSFR) to the cor-
rected measured fluorescence (SFF) for it.”!! The system consists of an MDSFR probe, which is
connected through a trifurcated fiber tree to a halogen lamp and two spectrometers for the reflec-
tance measurements and via a quadfurcated fiber tree to a laser source and a third spectrometer
for the fluorescence measurements. As the system must combine signals from two diameters and
three individual spectrometers, the correct merging of these spectrometer channels is important
for accurate determination of the optical properties and thus intrinsic fluorescence. Differences in
spectral sensitivity and transmission efficiency are corrected by inserting the probe into an inte-
grating sphere and applying uniform illumination using a halogen lamp. Additionally, two liquid
phantoms, one is intralipid and another is water, account for the spectral illumination and trans-
mission efficiencies and the spectrometer sensitivity for each effective probe diameter.

An MDSFR measurement consists of several co-localized single fiber reflectance (SFR)
measurements of a turbid medium using two or more probe diameters. These SFR spectra are
individually corrected for the effects of absorption, without prior knowledge of the scattering
properties, resulting in the reflectance in the absence of absorption R(S]F.12 By acquiring SFR
spectra with multiple probe diameters, an estimation can be made for the reduced scattering
coefficient (p/) and the phase function parameter (y).'%!'*!* The p! and y can then be utilized
in the individual SFR measurements to re-estimate the absorption coefficient (p,). Ultimately,
the absorption, reduced scattering coefficient, and phase function can be used to correct the
fluorescence signal, resulting in the intrinsic fluorescence.'""!

Calibration of the device is performed before each procedure to account for the spectral illu-
mination, transmission, and detection efficiencies of the device. However, also internal and
external factors can influence the calibration and therefore the quality assessment over time.
The effect of these factors on the calibration quality is unknown until now. A reduction in the
calibration quality could influence the optical property and intrinsic fluorescence determination.
Although not all influences on the device and its calibration can be fully prevented during a
longer period of time, by determining the effect of these changes on the calibration and optical
property determination it can be accounted for.

Small changes within the device, repairments of the device, and the MDSFR probe perfor-
mance are the main internal factors influencing the calibration. The MDSFR probes are custom-
made and manufactured as sterile probes. In our studies, sterility of the probes is often not nec-
essary and therefore they are manually cleaned so they can be used multiple times. Also, these
probes are used for both in vivo, endoscopically and surgically, and ex vivo purposes. During
procedures, probes are exposed to bending, handling, and other risks which could induce deg-
radation of the probe, possibly resulting in loss of signals. Endoscopically, the probe is exposed
to even more stress. At insertion, the probe is bent but also at the tip of the endoscope it is
manipulated. Additionally, the system can be set to different wavelengths by adjusting the fiber
tree and corresponding filter sets. To change between wavelengths, the fiber tree has to be dis-
connected and switched which again increases the risk of degradation. The effect of these two
internal factors on the calibration quality over a long period of time is unknown until now.

Journal of Biomedical Optics 074714-2 July 2022 « Vol. 27(7)



Schmidt, Nagengast, and Robinson: Characterizing factors influencing calibration. . .

For the external factors, the intralipid phantom is the main component of variation combined
with the number of users using the device. Often no standardized liquid phantoms can be pur-
chased, and custom-made phantoms are used that can vary over time.'®!”

Previously, solid phantoms, both white and black spectralon and silicone phantoms were
explored for the calibration of this system.'? Using the spectralon standards (Labsphere
SRS-99 and SRS-02) a set distance between the probe and spectralon surface is necessary.
Maintaining this distance for each calibration is difficult, especially in a clinical setting.
Silicone phantoms do not have this problem, as the probe can have direct contact with the phan-
tom. However, this creates its own problem, as the pressure of the fiber on the phantom is dif-
ficult to maintain equal. Additionally, the surface of the solid phantoms can collect dust, possibly
influencing the calibration. Therefore, we chose to use a liquid intralipid phantom for the cal-
ibration of this system. By submerging the fiber into the phantom, we eliminate the sensitivity to
contact conditions and probe to phantom distances.

The custom-made intralipid solution is made from Intralipid 20% (Fresenius Kabi) and NaCl
solution. Preparation of the solution by multiple users has the potential to induce variations in the
quality of calibrations. Finally, the calibration is performed by multiple trained users, which may
induce further variation between calibrations. Sufficient knowledge of the effect of both internal
and external parameters is necessary to enable accurate measurements and ultimately to opti-
mally determine the optical properties and intrinsic fluorescence, particularly when upscaling
and multicenter trials using multiple devices are considered. Also, in large clinical trials, multiple
researchers are involved in performing both the measurements and calibration. Although users
are trained, inter- and intra-user variability remain a potential problem. By the evaluation of the
sources affecting the calibration procedure and to what extent, the standardization and quality
assessment of the device can be improved.

To establish the internal and external factors influencing the calibration, we performed two
types of analysis. One based on static calibrations followed by skin measurements (fingertip) and
one based on clinically performed calibrations. The first validates the effect of different sources
under equal circumstances and the effect of calibration quality on the optical property determi-
nation. The second shows the effect of different system configurations and the performance
of the probe and fiber tree(s) over time. We aim to investigate which factors influence the cal-
ibrations and if this translates to the determination of optical properties. This could improve the
quality assessment of the system and allow upscaling of the clinical research using MDSFR/SFF
spectroscopy.

2 Methods

The MDSFR/SFF device consists of a custom-made MDSFR probe (Light Guide Optics)
designed to fit through the working channel of an endoscope. The probe contains eight optical
fibers for both delivery and collection of the reflected light (Fig. 1). These eight fibers can be
used to acquire reflectance spectra for two effective diameters, small diameter of 470 ym and a
large diameter of 1100 ym. Each probe is polished at an angle of 15% to minimize the internal
specular reflections from the probe tip. For each measurement, first, a reflection spectrum is
acquired for each effective probe diameter (pink and green) followed by the acquisition of
fluorescence spectra from the large effective diameter (orange). White light illumination is pro-
vided by a tungsten halogen light source (HL-2000-FHSA, Ocean Optics, Duiven, The
Netherlands) directed through the first leg of the five-legged fiber tree into the MDSFR probe
and into the tissue. The reflected light is collected by the same probe and directed via another leg
of the five-legged fiber tree into one of the two spectrometers (SD-2000, Ocean Optics) for
detection. Fluorescence excitation is achieved by guiding light from a laser source via a fourth
leg of the fiber tree and a large effective diameter onto the tissue. The scattered fluorescence
light is collected via the last leg of the fiber tree into a third spectrometer (QE-65000, Ocean
Optics), where a notch filter blocks excitation light. Both light sources (halogen and laser) have
computer-controlled shutters to regulate the illumination. For each of the studies described
below, spectra were acquired using the same integration time and the same number of spectral
averages.
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Fig. 1 (a) Schematic overview of the MDSFR/SFF device. Each measurement consists of a
reflection measurement with sequentially the small diameter (470 um) and the large diameter
(1100 pm), and a fluorescence measurement with the large diameter (470 ym). (b) An example
of the raw signal from an intralipid phantom under white light illumination corrected for the dark
background signal and corresponding water measurement.

Table 1 Characteristics for the MDSFR probes.

Number of
Probe Length (m)  procedures Period of usage Application Number of users
Probe 1 24 0 — Unused 1
Probe 2 2.4 47 October 2019 to June 2021 Endoscopic 6
Probe 3 2.4 45 September 2019 to May 2021 Endoscopic 5
Probe 4 2.4 67 Sepember 2019 to May 2021 Surgical 3
Probe 5 1 >100 September 2019 to May 2021 Ex vivo 10

In this study, we evaluated four clinically used MDSFR probes and one new, unused MDSFR
probe. Table 1 shows the probe specifications and the number of procedures that were performed
with the probe and for which application they were used, endoscopic procedures, surgical pro-
cedures (in vivo), or surgical specimen (ex vivo). Additionally, because of damage to the fiber
tree during the clinical studies, two fiber trees have been used consecutively. The effect of the use
of both on the calibration quality was also evaluated.

2.1 Extraction of Optical Properties

The extraction of optical properties from an MDSFR measurement was previously described.'®
In short, for each SFR measurement, the tissue absorption coefficient p,, is determined by
a modified Beer—Lambert law relationship

Ry = R(S)Fe_”“LSFR . (1)

With the model for the effective SFR path length

Lgrr _ Cprpi )
dr (u)"[ps + (pedy)P)’
and the model for RY.
'd )P5
RO — . (1 —papld; 7(”5 f . 3
SF ’7hm( +p6e )l:p4 + Ols/df)ps ( )
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including a background scattering model. The collection efficiency at the diffusion limit is
described by #;;,. This is given at 2.7% for a probe numerical aperture of 0.22 in a medium
of refractive index 1.38.!° The product of terms preceding the square brackets represents the
single-fiber collection efficiency. The term within the square brackets describes the saturation
relationship between R3, and p/d '+ that showed phase function independent behavior for high
dimensionless scattering values. The fitted parameters [Cpg, p;, p2, p3] and [py, ps, pg] were
derived from previously performed Monte Carlo simulation.'** The values [0.944, 1.54,
0.18, 0.64] for [Cpg, py, P2, p3) and the values [6.82, 0.969, 1.55] for [py, ps, pg] were found
to minimize the residual error between the SFR model and the simulations.

2.2 Calibration Method

First, the probe is inserted into an integrating sphere to measure the spectra for all spectrometers
under uniform illumination. These spectra are used to correct the spectrometer channels for
differences in spectral sensitivity and transmission. Next, the spectra are corrected for the
spectrometer sensitivity for each effective probe diameter. This step is achieved by sequentially
submerging the probe into two liquid phantoms, a 2% Intralipid solution, and a dark container
with water.?'

The spectra from the intralipid phantom (I°) are compared with the absolute reflectance for
this phantom (RS™) simulated by a Monte Carlo model for each probe diameter. The water phan-
tom spectrum (IS..) emerges from back reflections within the system and is subtracted from
every measurement. The resulting measurement is calibrated into absolute reflectance (Rgp) for
each probe diameter independently, where

Ieff _ Ieff
__ psim T meas water
RSF - Rcal Jeft — peft : “)
cal water

Equation (4) is used to calibrate the reflectance spectra from each effective probe diameter
independently.

2.3 Tripod

A tripod was designed and custom-made by the Research & Support Facility of the University
Medical Center Groningen. This tripod holds the probe for calibration measurements, reducing
the movement during the measurement. Without the tripod, the probe is held by the user.

2.4 Phantom Study

We evaluated the five MDSFR probes and 10 intralipid phantoms with different shelf lives under
identical conditions. All phantoms were prepared to calibrate the system and perform measure-
ments for several clinical studies and, therefore, were made by multiple users. The intralipid
phantom consisted of 2.64 mL Intralipid 20% (Fresenius Kabi) with 37.36 mL 0.9% NaCl,
resulting in a total of 40 mL of 2% Intralipid. This phantom was stored in a clear plastic, cylin-
drical container with a volume of 40 mL at 4°C. As these intralipid phantoms were prepared and
saved over a period of 20 weeks, different batches of Intralipid 20% were used. In total, 10
Intralipid phantoms were saved over time, ranging thus from same-day preparation to 20 weeks
after preparation. The solutions were stored at 4°C between measurements, which were per-
formed at room temperature. For each probe, five calibrations were performed for each intralipid
phantom. Each calibration was followed by a set of five skin measurements where the probe was
placed on the fingertip of a single user and held stationary between measurements. These skin
measurements mainly consist of scattering signatures that are relatively similar between people.
Therefore, reflectance spectra of these skin measurements are already clinically used as an extra
verification of the calibration quality.
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2.5 Clinical Study

We investigated the calibrations performed for several clinical pilot studies. These were per-
formed by 11 users for four probes between October 2019 and June 2021. Calibration was per-
formed before each new (clinical) procedure up to 24 h, without disconnecting the fiber tree or
MDSEFR probe, before the clinical measurement in a dark environment.

2.6 Data Reduction and Statistical Analysis

2.6.1 Calibration quality

A custom-made MATLAB (release 2018a, The Mathworks, Natick, Massachusetts, United
States) script was used for the analysis of the calibration data for both the phantom and clinical
study. The calibration quality was calculated as the mean signal-to-noise ratio (SNR) (intralipid
signal/std intralipid), which describes changes of the signal over time. These changes can be due
to phantom degradation, probe degradation, and fiber tree deviations. A 50 nm bandwidth
centered on 700 nm from the Intralipid reflectance spectrum was chosen for this calculation.
Although the SNR showed the highest signal around 600 nm, this also included the highest
variation within the spectrum (Fig. 1). The wavelength of 700 nm was the second-highest and
showed a linear decrease in the intensity of signal over this wavelength band.

2.6.2 Optical property determination

The optical properties were estimated as described in Sec. 2.1. Two previously performed studies
showed very low blood volume fraction (BVF) in superficial skin measurements.**> When the
BVF is low, the measurements are dominated by the scattering properties. Therefore, in this
study, we only show the results of two scattering properties; p; and the power law exponent.
Three exclusion criteria were applied to reflectance spectra used to determine the optical proper-
ties of skin: (1) an absolute residual > 25, (2) a blood volume fraction > 40%, and (3) a mean
saturation (StO,) confidence interval of more than three standard deviations from the mean.
If data agreed with one of these criteria, the measurement was excluded from the analysis.
The weighted means of the tissue optical property parameters were calculated by averaging
repeated measurements per calibration file by the individual confidence intervals. This resulted
in five mean values per intralipid phantom.

2.6.3 Statistical analysis

Differences between the two groups were analyzed using an unpaired #-test (normally distrib-
uted) or a Mann—Whitney test (non-normally distributed data). Differences between multiple
groups were analyzed using ANOVA. Simple linear regression was performed to determine the
signal over time. A p-value below 0.05 (two-sided) was considered statistically significant.
Statistical analysis was performed using GraphPad Prism (version 9.2, GraphPad Software,
La Jolla, California, United States).

3 Results

3.1 Data Overview

In total, 250 calibrations were performed for the phantom study and 163 for the clinical study
[Fig. 2(a)]. The former included five calibrations per intralipid phantom, resulting in 50 cali-
brations for each MDSFR probe. All measurements were measured sequentially for each probe,
starting with the newest intralipid phantom first. The clinical calibrations were gathered from the
clinically performed calibration files performed at the time of measurement. Calibrations were
excluded where the probe type or user who performed the calibration was unknown. Ultimately
the calibrations were divided into three groups: the first evaluated the two fiber trees, the second
evaluated the added value of a tripod during the calibration, and the third evaluated the probe and
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Fig. 2 Flowchart of the included (a) calibrations and (b) skin measurements used for analysis.

fiber tree performance over a period of 21 months. Calibrations from the second and third groups
only include measurements with the same type of fiber tree configuration. All measurements
were performed with the use of a tripod except if stated otherwise.

A total of 1447 skin measurements were performed for all probes [Fig. 2(b)]. The number of
skin measurements per calibration varied between five and eight measurements. Extra measure-
ments were taken if there was uncertainty about the quality of the measurement, due, for exam-
ple, to probe movement. The three exclusion criteria described above resulted in a removal of
1.4%, 8.2%, and 6.1% of the measurements for the residual, BVF, and StO,, respectively. The
remaining measurements were used to calculate the optical properties of skin and evaluate the
performance of the fiber tree and MDSFR probes.

3.2 Phantom Study

To determine the variability between the intralipid phantoms with different preparation dates, all
probes were compared intra- and inter-phantom for the measured SNR values (Fig. 3). Overall,
the intra-phantom variability was below 4% and the inter-phantom variability below 9% for all
probes. For all five probes, the highest intra-phantom variability (2.2% to 3.1%) was found in
phantom 6. Only probes 1 and 2 showed the lowest values for the variability in phantom 1,

1007 -~ Probe 1

957 ’T Probe 2

9.0 I/\r\f/i—7g\/f::£ —+— Probe 3
% 8.5 \/ Probe 4

8.0 * —+ Probe 5

7.5

7.0 T T T T T T T

L
1 2 3 4 5 6 7 8 9 10

Intralipid solution

Fig. 3 Intra- and inter-phantom variability for five probes. Probe 1 showed a significant difference
for all intralipid phantoms, except for phantom 2, compared to the first intralipid phantom. For
solution 8, probe one shows a p-value of 0.0010. Probes 2 to 5 show only a significant difference
for solution 8, p = 0.0008, p = 0.0002, p = 0.0005, and p = 0.0032, respectively.
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Fig. 4 The SNR values for all 10 intralipid phantoms per probe. Median values are plotted. p-val-
ues were calculated with a Kruskal-Walis test.

as expected. For probes 2 to 4, the lowest values were measured for phantom 4, 10, and 9,
respectively. Additionally, phantom 1 was set as a reference phantom for the inter-phantom vari-
ability as it should be the most optimal one. Only phantom 8 showed a statistically lower SNR
between the first and eighth intralipid phantoms for all probes (Fig. 3). Interestingly, all intralipid
phantoms measured with probe 1 deviated significantly from the first intralipid solution, except
for the second phantom.

Figure 4 shows the SNR values for all ten intralipid phantoms per probe. Probe 3 shows a
higher median SNR compared to all others, which was statistically different for probes 1, 2, and
5 (p = 0.0258,p = 0.0425, and p = 0.0024, respectively). The high inter-phantom variability
within probe 1 is also clearly visible here.

Intralipid solutions remained stable until 20 weeks after preparation. Only for the 16-week-
old phantom, the calibration quality was reduced. Therefore, the influence of the intralipid phan-
tom is minimal as long as it is kept free from contamination. Moreover, a difference in calibration
quality per probe was measured, which was only significant for probe 3, compared to probes 1, 2,
and 5. This difference appears to be a certain factor per probe, which could possibly be corrected
by establishing the initial performance of the probe.

3.3 Clinical Study

For the clinical calibration, the influence of the type of fiber tree with or without a tripod and the
changes of the probe over the evaluated time period was assessed using the calibration quality.
The tripod and fiber tree could only be evaluated with two probes as the other probes were not
used in both situations. However, both the tripod and fiber tree groups had a limited number of
measurements in the “without tripod” and “old fiber tree” groups, respectively (Fig. 5). The
tripod was utilized during calibration to stabilize the probe during the phantom measurements
as the movement of the probe during these measurements could decrease the calibration quality.
Nevertheless, the usage of a tripod did not show an effect on the measurement stability and
therefore the calibration quality (p = 0.13 and p = 0.92). On the other hand, the fiber tree did
show a statistical difference between the old and new fiber trees for both probes (p < 0.000001
for probe 4 and p = 0.00038 for probe 5).

Finally, the probes were evaluated over a specific period of time. Collating the calibrations
performed per probe did not demonstrate a difference in the mean SNR [Fig. 6(a)]. Also, the
variability between calibrations was below 8% for all probes. Probe 3 showed the highest vari-
ability (7.0%) and probe 2 the lowest (3.7%). Using linear regression, the change in SNR over
time was evaluated for each probe individually [Figs. 6(b)-6(e)]. None of the probes showed
a significant difference between the SNR over the evaluated period.
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Fig. 5 The effect of (a) the tripod and (b) fiber tree for two probes. p-values were calculated using
a multiple Mann-Whitney test.
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Fig. 6 (a) All clinical calibrations together per probe and (b)-(e) the measured SNR per calibration
over a time period including the linear regression line.

Evaluating the performance of the system over a period of 21 months showed that only the
performance of the fiber tree influenced the calibration performance. The use of the tripod did
not improve user calibration quality. Interestingly, although probes are prone to stress during the
clinical measurements, this does not seem to influence their performance.

3.4 Optical Properties

After the removal of the spectra that matched the exclusion criteria mentioned above, the remain-
ing skin measurements were assessed. It is important to note, all skin measurements were
performed by one user and the probe was not moved between measurements for the same cal-
ibration. For each set of five skin measurements per calibration, the scattering and absorption
parameters were evaluated by calculating the weighted mean. As skin measurements are domi-
nated by the scattering parameters, only the reduced scattering coefficient at 800 nm and the
power law exponent were used for further analysis. For these two parameters, the weighted mean
was calculated per calibration, resulting in five mean values per intralipid phantom.

Figures 7(a)-7(e) show the weighted mean for the reduced scattering coefficient per intralipid
phantom per probe. For the inter-phantom calculations, which were only compared to the first
phantom, phantom eight showed a higher SNR for all probes. This was statistically different
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Fig. 7 The weighted means for the (a)-(e) reduced scattering coefficient and (f)-(j) power law

exponent.
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Table 2 Extracted means and standard deviations for the intra-phantom variability for the reduced
scattering coefficient and power law exponent.

Probe 1 Probe 2 Probe 3 Probe 4 Probe 5
Parameter Mean SD Mean SD Mean SD Mean SD Mean SD
T 221 7.3 29.6 12.6 19.4 9.8 32.7 15.2 33.2 7.8

Power law exponent 20.8 8.6 29.3 18.0 17.2 8.4 23.8 12.2 20.8 6.40

(p < 0.0001) for probes 1 to 3. For the power law exponent [Figs. 7(f)-7(j)], the SNR of phantom
8 is lower compared to the other phantoms for probes 1 to 4, and only statistically different for
probe 3 (p < 0.0001). Interestingly, probe 5 showed a higher SNR for phantom eight compared
to the other phantoms. When correcting the weighted means for the probe, no differences were
found for either parameter.

Table 2 shows the intra-phantom variability mean and standard deviation for both parameters
per probe. The intra-phantom variability is higher for these parameters compared to the values for
the calibration. Probes 1 to 3 show comparable values for both the reduced scattering coefficient
and the power law exponent, where probe 3 showed the lowest variability for both parameters.

3.5 Users

To determine the variability between users, the spread in calibration quality was evaluated for six
individual users. Each user should have performed a minimum of four calibrations for the evalu-
ated probe. None of the probes showed statistically significant a user-dependent difference for
the calibration quality (Fig. 8).
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Fig. 8 The calibration quality between users for all four clinical probes: (a) probe 2, (b) probe 3,
(c) probe 4, and (d) probe 5.
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4 Discussion

Standardization of the calibration procedures and system evaluation over time are important
factors to provide upscaling of clinical research. In this study, we investigated which internal
and external factors affected the calibration quality (SNR) and the optical property determination
of skin during MDSFR/SFF spectroscopy. Our results show that the intralipid phantom sterility
and fiber tree performance are the main factors affecting the calibration quality. The intra- and
inter-phantom variability for the calibration quality was stable and below 10% for both the
phantom and clinical study. A contaminated intralipid phantom can affect the calibration quality
as shown by phantom 8 in the present study. Although the fiber tree was expected to be a passive
component of the system, having no influence on performance, we have shown that it can
have an impact on the calibration quality. The probe, on the other hand, did not show any
degradation of performance over a period of 21 months despite this component being much
more stressed during clinical measurements. Finally, our study of different users demonstrated
that a stable calibration can be achieved without the need for a tripod holding the probe during
the calibration.

The intralipid phantom study present here showed that careful handling and storage of the
intralipid phantom is important. Since we evaluated the calibration quality under uniform cir-
cumstances, other influences such as measurement environment, users and probe performance
were limited. Therefore, differences measured in the intra- and inter-phantom measurements
could only be the result of the intralipid phantom itself. This suggests that the deviations found
in phantom 6 (intra-phantom) and phantom 8 (inter-phantom) are the results of contamination of
the phantom itself. This is supported by the fact that similar deviations are found for all five
probes. However, if careful preparation and storage of the phantom are taken into account,
it shows a stable calibration quality for at least 20 weeks. Di Ninni et al.'” also observed high
stability for the optical properties of Intralipid 20% (Fresenius Kabi) sample-to-sample and
between batches and over time. Multiple samples were taken from the same batch for a 2-year
period. A batch-to-batch variation of 2% was found for the reduced scattering coefficient and
overtime only a difference of 4%. No significant differences were found in the sample-to-sample
measurements.

In contrast, the clinically performed calibrations were not performed under uniform condi-
tions. Therefore, the effect of the intralipid phantom could not be evaluated. However, it does
provide the opportunity to assess the influence of the system, probe performance, and user per-
formance (including tripod) over a prolonged period of time. We expected that probe degradation
would influence calibration quality due to the induced stress, while the fiber tree was expected to
be a passive component, not affecting the calibration. However, the probes did not show sig-
nificant changes in performance over a period of time, but the fiber tree did. This illustrates that
the fiber tree should be included in the quality assessment of the system. Moreover, the induced
stress and usage of more than a hundred times did not affect the performance of the clinical
probes. Although the probe performance is stable over time, we do not know if there is a first
use effect. Since probes are manufactured and are sterile probes, it could be that their calibration
properties change after their first contact with liquid. This first use effect could explain the high
variability that was measured in the unused clinical probe. Therefore, an initial measurement of
both the probe and fiber tree performances would be an important component of the quality
assessment. This initial measurement could enable the calculation of a correction factor, which
can be used to compare between different system configurations or probes. Finally, no difference
in calibration quality was observed between users, and also the tripod did not show a quality
improvement. This suggests that users can accomplish a stable measurement without the use of
the tripod. However, this does not indicate that the tripod is not useful. While it may not aid in
calibration stability, it does help users to make the calibration procedure easier to perform alone
and allows them to perform other tasks during the calibration procedure.

The effect of the calibration quality on the optical properties could only be determined for the
phantom experiment as these were performed under uniform circumstances. Intralipid phantom
8, which showed a lower SNR, caused deviations in the determination of the scattering proper-
ties. The decrease in SNR resulted in a large increase in the measured reduced scattering coef-
ficient and a decrease in the power law exponent parameter for the skin. The magnitude of the

Journal of Biomedical Optics 074714-12 July 2022 « Vol. 27(7)



Schmidt, Nagengast, and Robinson: Characterizing factors influencing calibration. . .

deviation was different per probe. The details of how a contaminated 2% Intralipid phantom
affects its scattering properties is unknown.

Translation of the effect of the calibration quality on clinically measured optical properties is
challenging. Whereas the skin measurements were performed under uniform conditions, on the
same tissue, and by one user only, clinical measurements are not. They are performed on various
tissue types by multiple users and the measurements are sensitive to the movement of both the
probe and the tissue underneath. Therefore, deviations in the optical properties are not only the
result of the calibration but a combination of the calibration and the above-mentioned influences.
Brooks et al. investigated the variability in the tissue optical properties of skin measurements
performed by multiple users using MDSFR/SFF.?* This study focused only on probe placement
and movement, pressure, and user variability, but not in the calibration itself. Variation of the
measured optical properties was primarily found to be the result of tissue heterogeneity instead
of user variability. In the present study, user variability was mainly defined as the variability in
probe placement technique. Since Brooks et al could not prove that probe pressure caused the
differences between users, they stated tissue heterogeneity to be the cause. It would have been
interesting to confirm the calibration quality was the same for all measurements.

It is important to note that the minimum optical property value that can be measured is de-
pendent on the SNR of the in vivo reflectance measurement. The reflectance SNR is affected by
the accuracy of the calibration, fiber diameter, tissue type, and the integration time of both the
calibration and measurement. For example, a poor calibration will have the strongest relative
effect on p. followed by the power law exponent. The effect on the p,, BVF, and StO, will
be less significant. As such, in the present study the variation we see in the scattering properties
of skin probably overestimates the magnitude of the effect on p,, BVF, and StO,. Our previously
performed pilot studies have, to date, including more vascularized tissues (i.e., rectum, esopha-
gus, and head and neck). In these studies, differences in p, have a larger influence on the
correction for intrinsic fluorescence than differences in p/.'® So, the effect of lower quality cal-
ibrations in the present study overestimates the magnitude of the effects of calibration quality in
more highly vascularized tissues. However, in studies where the scattering properties are applied
as a discriminator between tissues, like pancreatic tissue and head and neck lymph nodes,>* the
effect of the calibration quality could be more important. We note reproducible data are relatively
simple to measure in the normal skin,?? it might prove more challenging to acquire data from
tissues with a higher blood volume to verify the mentioned influences. The oral cavity may be a
potential area to perform future research. Additionally, in clinical use, the measurement integra-
tion time is the main limiting factor for increasing the SNR. The clinicians are limited by its
ability to hold the probe stationary during the measurement. The integration time is therefore a
trade-off between the longest possible integration time and the ability to keep the probe stable.
An increase in the integration time would lead to a higher SNR and therefore allows a more
accurate measurement of low BVF and StO..

Our current proof-of-principle clinical studies are often short-term studies that include a
small number of users and clinical subjects that normally utilize one imaging system.*
Therefore, the influence of the calibration quality was not our main focus. However, the potential
for multicenter studies increases the need for comparison between systems and their functioning
over time. The previously described results show that quality control/assessment will be impor-
tant to give users feedback on the system performance and calibration quality over a longer
period of time. For the current calibration procedure, the measured water spectrum can already
indicate probe breakage by high peaks in the normally flat spectrum. However, it would be
advantageous to know if degradation of the probe and/or fiber tree occurs before it breaks.
Optimally, the calibration quality is calculated after each calibration and shown together with
the initial calibration and previously performed calibrations. Further research on this data could
maybe predict a cut-off value until when a probe or fiber tree can be used before it needs chang-
ing. Tracking the probe performance more carefully could also help the user with the interpre-
tation of the clinical data. For example, if data deviates or lower values are measured than
expected, the quality control can be assessed to see if there were any performance problems
on the day of measurement. In addition to maintaining the performance of the device, the sterility
of the intralipid phantom is also important. Even though the intralipid phantoms showed to be
very stable over a long period of time, a contaminated phantom could have a large influence on
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the calibration quality. Especially in larger studies when both in vivo and ex vivo fibers are
calibrated, it is important to regularly change the intralipid solution to prevent contamination.
The frequency should rather be based on the number of calibrations performed with the phantom
than the duration of storage, as the number of calibrations is a higher risk for contamination.

5 Conclusion

This study investigated which internal and external factors influence the calibration quality and
optical property determination using the MDSFR/SFF spectroscopy system. The intralipid phan-
tom quality and the fiber tree performance were the main factors influencing the calibration
quality. Probe and user performance did not show any effect, which makes the upscaling of
research to multicenter trials easier. Furthermore, a high-quality assessment procedure should
be implemented to track changes during clinical trials over a longer period of time.
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