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Abstract

Significance: Spatial frequency domain imaging (SFDI) and spatial frequency domain spectros-
copy (SFDS) are emerging tools to non-invasively assess tissues. However, the presence of
aberrations can complicate processing and interpretation.

Aim: This study develops a method to characterize optical aberrations when performing SFDI/S
measurements. Additionally, we propose a post-processing method to compensate for these
aberrations and recover arbitrary subsurface optical properties.

Approach: Using a custom SFDS system, we extract absorption and scattering coefficients from
a reference phantom at 0 to 15 mm distances from the ideal focus. In post-processing, we
characterize aberrations in terms of errors in absorption and scattering relative to the expected
in-focus values. We subsequently evaluate a compensation approach in multi-distance measure-
ments of phantoms with different optical properties and in multi-layer phantom constructs to
mimic subsurface targets.

Results: Characterizing depth-specific aberrations revealed a strong power law such as wave-
length dependence from ∼40 to ∼10% error in both scattering and absorption. When applying
the compensation method, scattering remained within 1.3% (root-mean-square) of the ideal
values, independent of depth or top layer thickness, and absorption remained within 3.8%.

Conclusions: We have developed a protocol that allows for instrument-specific characterization
and compensation for the effects of defocus and chromatic aberrations on spatial frequency
domain measurements.
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1 Introduction

Spatial frequency domain techniques use spatially modulated illumination patterns to quantify
absorption and scattering properties of tissue and other diffusive media across visible and/or
near-infrared ranges.1–4 These techniques can be implemented in a variety of ways such as spatial
frequency domain imaging (SFDI)2 or spatial frequency domain spectroscopy (SFDS).3 Through
the quantification of these optical properties, SFDI/S has demonstrated the potential to non-
invasively assess skin cancers,5,6 wound severity,7,8 and tissue structure and viability9,10 in the
skin. In many of these clinical applications, such as burn wound assessment and melanin quan-
tification, depth sensitivity and subsurface discrimination approaches enabled by SFDI/S are
critical features toward accurate characterization of specific tissue volumes.11–15

Spatial frequency domain techniques utilize a light transport model-based approach to relate
the measured remitted reflectance from turbid media, such as tissue, to quantitative values of
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absorption and reduced scattering. These models presume a uniform distribution of light upon
which the spatial frequencies are encoded, and the propagation of this planar illumination pattern
will only be impacted by the absorption and scattering properties within the tissue volume. To that
end, the optical characteristics of the instrument must be accounted for to isolate measured reflec-
tance signals resulting from the interaction of these illumination patterns with the tissue itself. This
task is typically performed in a calibration procedure where a fully characterized reference phan-
tom is measured either prior to or after the target medium.2,3 These reference phantoms play a
critical role, as their absorption and scattering properties are known in advance and hence can
characterize these instrumentation contributions to the detected reflectance signals.

Though not often acknowledged explicitly in the literature, this calibration approach using
turbid reflectance standards not only will correct for inhomogeneities in illumination intensity
over the field of view at each individual spatial frequency, but also any out-of-plane degradation
of the pattern integrity (independent from the tissue’s intrinsic optical properties) as the planar
illumination pattern propagates into the tissue volume. These out-of-plane degradations are a
result of the optical design of the SFDI/S system, primarily its depth of focus and chromatic
aberrations, which change as a function of distance relative to the ideal image plane. Since many
SFDI/S systems are built around pre-existing projection units, the optical design is often
embedded with the digital micromirror device and optimized for wide-field projection applica-
tions in either the visible or near-infrared wavelength regimes.16–20 This has led to systems that
reduce the projection field of view with additional lenses. This type of modification also reduces
the working distance between the instrument and the target medium, which has advantages
toward the development of compact handheld systems. This reduced working distance, however,
can also reduce the depth of focus. This could rapidly blur the projected pattern as it propagates
into the tissue volume and compete with the effects of light scattering. Likewise, several SFDI/S
approaches span both visible- and near-infrared regimes,3,6,8,13,17 which also can be complicated
by chromatic aberrations as most achromatic designs only compensate for this type of aberration
over a few hundred nanometers.

It has been shown that when the target tissue has a distinct surface shape and depth (i.e.,
topology), errors in the determination of optical properties may occur due to the tissue surface’s
distance relative to the ideal imaging plane of the SFDI/S instrument.21 Previous studies have
employed sample surface profile information to adjust for venous imaging22 or imitate diffuse
reflectance of biological tissues.23 Similar approaches, combined with multi-step calibrations
procedures, have also been developed to correct for this displacement error in the context of
SFDI/S.13,24

In this work, we will present a simple method using a single tissue-simulating phantom to
evaluate the influence of out-of-plane optical aberrations in the context of the resulting absorp-
tion and reduced scattering coefficients. As different spatial frequency instrument designs will
exhibit their own distinct combinations and magnitudes of optical aberrations, this characteri-
zation method can provide vital feedback on the accuracy and spectral integrity of depth-specific
optical properties. Additionally, once this optical characterization is obtained, we will also dem-
onstrate how this data can be used to compensate for these aberration errors in post-processing
for a spatial frequency domain setup that is particularly susceptible to these types of aberrations
(e.g., a compact SFDS system). This compensation approach is evaluated both in measurements
of a phantom with differing optical properties of that used in characterization and in multi-layer
phantom constructs. The former one demonstrates that this empirical method can be applied to
arbitrary tissue optical properties over a range of positional displacements from the ideal image
plane and in the latter case demonstrates that sub-surface optical properties can be extracted
when the top layer properties are known.

2 Material and Method

2.1 SFDS Instrument under Investigation

The measurement technique in this configuration uses spatially modulated sinusoidal light
patterns of visible- and near-infrared light projected at varying spatial frequencies, which are
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collected from a single point as delivered to a spectrometer via an optical fiber. This specific
SFDS instrument was chosen for two reasons: (1) its compact optical design and short working
distance makes it susceptible defocus errors and (2) spanning visible and near-infrared regimes
makes it susceptible to chromatic aberrations. The data collection and processing of SFDS data
have been explained in detail elsewhere.2,3 To project structured light patterns with five equally
spaced spatial frequencies ranging from 0 to 0.2 mm−1 this instrument employs a 150-W quartz-
tungsten-halogen light source (21DC-3AHD-TQB-FILT, Techniquip) coupled to a digital micro-
mirror device, DMD, (AJP-4500 DMD Projector, Ajile Light Industries Inc.) via a fiber optic
bundle.

This projection unit was modified through the addition of a 50-mm focal length lens at the
distal end of its integrated lens system, resulting in a 55 × 37 mm field of view at a working
distance of 75 mm. The light was collected by the optical fiber and delivered to a spectrometer
(AvaSpec-ULS2048CL-EVO-VA-50, Avantes BV). In the context of this paper, we chose to
use a range of 432 to 950 nm due to the limited signal-to-noise ratio (SNR) for the extreme
wavelengths.

To reject specular reflection from the sample's surface, polarizing filters were used in the
system. The first polarizer was positioned after the DMD, and the analyzer was inserted between
the collection lens and the fiber optic. To improve the SNR, an average of 40 measurements were
used for each spatial frequency.

2.2 Experimental Setup and Data Collection

Phantoms are frequently used to test a system's or algorithm’s accuracy. A step-by-step process
for fabricating silicone phantoms adjusted to certain optical properties in the visible and
near-infrared range is detailed elsewhere.25 In this investigation, we used a single reference
phantom to characterize the depth-specific errors the instruments optical aberrations impart.
For this investigation, it will be referred to as the “reference phantom”. This phantom used
TiO2 [Titanium (IV) Oxide, anatase, Sigma-Aldrich] as the scattering agent, and the absorber
was India ink (Pebeo). The optical properties of the phantom were independently characterized
using multiple optical techniques, including inverse adding doubling, multi-distance spectros-
copy, and SFDI.26 A second homogenous phantom was used to evaluate how well this
method could be applied to turbid media of arbitrary optical properties over a range of positional
displacements. This phantom will be referred to as the “test phantom.” Red food dye
(Dr. Oetker) was used as an absorber as it loosely mimics hemoglobin absorption but also
provides variation in wavelength-specific absorption unlike the relatively flat absorption from
India ink. In this test phantom, TiO2 was used as a scattering agent. Lastly, to mimic subsurface
targets, three thin phantoms containing the same concentration of India ink and TiO2 were placed
in direct contact on top of the test phantom, which serves as the bottom layer. These three
phantoms had thicknesses of 1.93, 2.58, and 3.19 mm, and absorption and reduced scattering
coefficients of 0.015 and 0.49 mm−1 at 650nm. This set of phantoms will be referred to as “lay-
ered phantoms.”

Both the reference and test phantoms were measured using the SFDS system at 11 distances
from the ideal image place (referred to as “in-focus”). These distances were each incremented by
1 mm up to 10 mm. An additional measurement at 15 mm was also collected to provide data
at a displacement beyond what one would expect to measure by SFDI/S techniques. The moti-
vation behind this extreme data point is to evaluate whether this correction method remains valid
well beyond typical measurement parameters. For the multi-layer phantom constructs, three
measurements were collected where each top layer thickness phantom was positioned at the
in-focus plan, resulting in the bottom layer phantom being displaced by the thickness of the
top layer.

All measurements were processed using a standard homogeneous Monte Carlo model for
SFDI data.2,3 For all these datasets, a single reference calibration, acquired in focus, was used.
From these process results, the determined absorption and reduced scattering coefficients were
then analyzed independently.
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2.3 Characterization Method

2.2.1 Interpretation and modeling of aberration influence on the scattering
coefficient

From a light transport model perspective in the spatial frequency domain, scattering essentially
blurs out the contrast of the projected pattern as it propagates through turbid media. Defocus
aberrations will also reduce the contrast of these spatial frequency encoded patterns, whereas
chromatic aberrations will displace where in depth the ideal image place is formed as a function
of wavelength. We assert that these mechanisms, however, are independent from scattering as
aberrations will only propagate in unscattered (and unabsorbed) light.

To characterize the impact of depth-dependent aberrations, the ratios of each reduced scat-
tering coefficient spectra at all depths were calculated relative to the phantom in the focused
position. These scaling errors were then fitted to an empirical algebraic equation. This was done
to remove any measurement noise and establish a smooth mesh that describes the non-linear
influence these aberrations impart. Though arbitrarily derived, Eq. (1) was used for modeling
these scaling errors, αðλ; zÞ, as it provided the most robust fitting across the full spectral range at
all depths measured. As the deviations in scattering due to optical aberrations are described in
fractional units, the resulting look-up table (LUT) is designed to be applied to any arbitrary
scattering spectrum,

EQ-TARGET;temp:intralink-;e001;116;500αðλ; zÞ ¼ −c1 × λ−c2ðzÞ þ c3 × λþ c4ðzÞ: (1)

2.2.2 Interpretation and modeling of the absorption coefficient

Unlike scattering, the absorption coefficient does not directly compete with optical aberrations.
Absorption would not alter the photon’s trajectory, rather it terminates its further propagation.
For that reason, the influence of aberrations on the determination of the absorption coefficient
will be more complex and indirect. As typically described in terms of Beer’s law,
IðlpÞ ¼ I0 e−μalp , there are two key components to keep in mind when considering how aberra-
tions could distort absorption values. The first of these is the source intensity, I0. Here, it is
presumed that as light propagates through non-scattering media, the reduction of light intensity
is due to losses from absorption. However, the aberrations we are considering in this investi-
gation will also reduce the light intensity as the field of view of the projected pattern will expand
slightly as it propagates in depth. We chose to model this additional source of error as a sub-
tractive offset in the resulting amplitude of the depth-specific absorption value. Second, the effec-
tive pathlength, lp, that photons travel in turbid media is now not just dependent on the scattering
properties, but rather, the combination of scattering and aberration errors. For this second com-
ponent, we choose to apply a scaling factor, αðλ; zÞ, utilizing the same characterization model.

For this characterization procedure, two steps were applied. First, the depth-specific absorp-
tion spectra from the reference phantom were normalized to the in-focus measurement at an
arbitrary wavelength. This normalization established the linear offset of each displaced absorp-
tion coefficient as a function of depth due to the defocusing reduction of light intensity. For
this investigation, we chose 650 nm. Once this normalization was performed, the scaling error
LUT was calculated for all wavelengths, at all depths, and the coefficients (c1; c2; c3; c4) were
obtained by fitting it to the same mathematical model.

2.4 Compensation Method

2.4.1 Evaluation of displaced homogeneous phantom

For the test phantom, the reduced scattering coefficients at different respective depths were com-
pensated by dividing the scattering spectrum by the interpolated, depth-specific scaling factors
from the LUT designed from previous section. As for the absorption, the resulting depth-specific
coefficients from the LUT multiplied to absorption spectrum first and then the depth-specific
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absorption spectra were subtracted by the linear offset coefficient that accounts for the scalar
reduction of light intensity, I0.

2.4.2 Evaluation of multi-layered constructs

For the multi-layer constructs as mentioned before the top layer thickness phantom with known
optical properties was placed at the in focused position, resulting the bottom layer to be displaced
by the thickness of the top layer. Utilizing a two-layer model proposed in previous studies, the
top layer properties were accounted for in the context of their relative, wavelength-specific par-
tial volume of the total estimated depth of interrogation.11,27,28 The same compensation pro-
cedure was then applied to the extracted bottom layer optical properties to illustrate that
optical aberrations are independent of optical properties of the phantom, even in multi-layer
structures.

3 Results

The scaling errors from measured data relative to when the phantom was placed in the focused
position are shown in Fig. 1 with solid lines. Here, there is a progressive underestimation of
scattering properties as a function of increasing distance from the focal plane. The dashed lines
show the fit curves [Eq. (1)] across the full spectral range at all depths. These fittings were done
to remove the measurement noise artifacts and establish a smooth mesh that can describe the
non-linear influence that the aberrations convey on the resulting reduced scattering coefficient.
An LUTwas generated from these fitted curves that could be interpolated to any arbitrary depth
up to 15 mm. To compensate for aberrations, measured scattering values would be divided by the
interpolated depth-specific curve from this table, absorption values would be multiplied by it.
Additionally, the offset term for the absorption values was determined to be 0.00025 mm−1 per
millimeter depth for this specific instrument setup. This offset value was highly linear over this
15-mm range, with R2 ¼ 0.999.

The measured reduced scattering spectra for the reference phantom, test phantom, and the
multi-layered constructs at different distances to the projection lens is shown in Figs. 2(a)–2(c).
As shown, the reduced scattering coefficient at different distances from the projection lens pro-
gressively deviates from the in-focus measurement. The compensated reduced scattering spectra
are shown in Figs. 2(d)–2(f) for the reference phantom, the test phantom, and the multi-layered
construct, respectively. These spectra were corrected using the characterization data obtained

Fig. 1 The calculated ratios of each reduced scattering coefficient spectra at all depths relative to
when the phantom was in the focused position (z ¼ 0), dashed lines are the data fitted using
Eq. (1).
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from reference phantom only. After applying the aberration compensation method, the scattering
spectra of the reference phantom from all distances are within an average of 0.1% root-mean-
square (RMS) error relative to the in-focus values (0.2% at 10 mm from the focal plane). Left
uncorrected, these RMS errors would be 18.2% on average and 40.2% at 10 mm. The average for
the test phantom scattering was 1.4% over all distances (uncorrected average: 17.1%, 36% at
10 mm) and ∼0.6% for the multi-layered construct.

The measured absorption spectra from the reference, test and multi-layer phantoms are
shown in Figs. 3(a)–3(c), respectively. Figures 3(d)–3(f) shows the recovered optical properties
for absorption coefficient after correcting for the errors, using the characterization data obtained
from reference phantom only. There is on average a ∼32.2% RMS error in uncorrected absorp-
tion spectra relative to the in-focus values for the reference phantom (45.5% at 10 mm). After

Fig. 2 Reduced scattering coefficient calculated at each distance and the respective aberration
compensated data for the (a) and (d) reference phantom; (b) and (e) test phantom; and (c) and
(f) multi-layered phantoms. z ¼ 0 refers to the ideal, in-focus reduced scattering spectra.

Fig. 3 Absorption coefficient calculated at each distance and the respective recovered aberration
compensated data for the (a) and (d) reference phantom; (b) and (e) test phantom; and (c) and
(f) multi-layered phantoms. z ¼ 0 refers to the ideal, in-focus absorption spectra.
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applying the compensation method, the absorption RMS error reduced to within 0.03% on
average. The test phantom showed an average ∼49.1% RMS error (69.5% at 10 mm) that was
reduced to an average of 3.8% over all distances (3.4% at 10 mm) and for the multi-layered
construct’s average of ∼43.7% was reduced to 4.7%.

Overall, the data shows that the recovery of both out-of-focus and subsurface optical proper-
ties can be achieved even though these optical aberrations can have a considerable impact on the
directly measured spatial frequency dependent reflectance values.

4 Discussion

We have presented a method to characterize and subsequently compensate for the depth-specific
impact that optical aberrations can have in spatial frequency domain measurements. The goal of
this investigation was to demonstrate that while these aberrations can significantly impact the
determination and spectral integrity of subsurface optical properties, they can be treated inde-
pendent from the intrinsic values of the turbid medium. Using a test phantom different from that
used to characterize the systems aberrations, we have shown that the compensation method can
be applied as a scaling factor (and an additional offset, in the case of weak absorption) irrespec-
tive of the target's optical properties, reducing errors on average by a factor of ∼12. While not
typical in most practical settings, this compensation approach was shown to remain effective
even at such extremes as 15-mm displacement errors. Additionally, to further illustrate this inde-
pendence of aberrations from the target’s properties, multi-layer phantoms were used where the
bottom layer optical properties were recovered to within <5% its target.

This approach does not directly address the effect of aberrations on the spatial frequency
dependent reflectance, but rather on its resulting estimation of absorption and reduced scattering
coefficients. One consequence of this approach is that it assumes that as the patterns of light
propagate into the turbid medium, the spatial frequency remains constant. This is not true as
defocus errors will broaden the effective area of the projected image as it propagates farther
way from the ideal image plane, effectively reducing the spatial frequency. In this case, the mea-
sured broadening of the project pattern at a depth of 10 mm was an additional 2 mm, effectively
decreasing the spatial frequency by <5% at its most extreme depth, even if all spatial frequencies
were to reach that depth, that would result in a calculation error <5%.21 We acknowledge that this
assumption is a limitation to this approach. Given its magnitude relative to the other aberration
induced errors, however, we consider this residual error to be minimal.

Considerations to the optical design of the SFDI/S can also play a significant factor in these
types of aberration induced errors. Rather than utilizing this empirical approach to compensate
for these errors, careful lens design choices can minimize these aberrations and hence negate the
potential need to utilize this method. The fitting equation [Eq. (1)] was derived empirically to
describe the specific combinations of aberrations present in the system used in this investigation.
It is expected that different systems would contain different combinations of aberrations and
therefore may require another functional form to describe their depth-specific errors. Note that
the terms in this equation do appear to correlate with chromatic aberration and depth of focus
errors from a simple lens design. The first term in this equation is the most dominant and cor-
relates with the expected behavior of chromatic aberration when only a single glass material is
used in the optical system. If chromatically compensating lenses are used (e.g., achromats, apo-
chromats, etc.), this simple power law term would no longer be sufficient as higher-order terms
would be required to describe the increasingly complex chromatic dependence of focal length.
The second term represents the slight wavelength dependent change in depth of focus due to the
chromatic aberration shift in focal length and the last term represents the general depth of focus
related to the numerical aperture of the imaging system.

From this investigation, the impact of the depth of field of the projected illumination has
been shown to impact the recovery of subsurface and out-of-plane optical properties. There are
several optical designs that can mitigate this type of aberration, e.g., high F/# systems, telecentric
designs, or aspheric extended field approaches. These optical solutions, however, often come at
a price in terms of practical clinical integration and use. Typically, these optical designs require
long working distances and/or low light throughput that compete with clinical space and data
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acquisition times. It is for these reasons that this characterization and compensations methods
are presented here as a pragmatic compromise on the instrumentation design while maintaining
spectral integrity of the data collected.

5 Conclusion

We have provided a method to quantify primary optical aberrations' potential impact on spatial
frequency domain measurements with respect to depth and proposed a simple empirical
approach to compensate for these errors in post processing. We have shown that, even though
these aberrations can considerably affect the spectral integrity of subsurface optical character-
istics, they can be addressed independently from the turbid medium's intrinsic optical properties.
This compensation method can be applied as an LUT to turbid media whose surface is displaced
from the ideal focus as well as the subsurface tissue structures in layered media.
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