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Abstract

Significance: Photoacoustic (PA) imaging can provide structural, functional, and molecular
information for preclinical and clinical studies. For PA imaging (PAI), non-ideal signal detection
deteriorates image quality, and quantitative PAI (QPAI) remains challenging due to the unknown
light fluence spectra in deep tissue. In recent years, deep learning (DL) has shown outstanding
performance when implemented in PAI, with applications in image reconstruction, quantifica-
tion, and understanding.

Aim: We provide (i) a comprehensive overview of the DL techniques that have been applied in
PAI, (ii) references for designing DL models for various PAI tasks, and (iii) a summary of the
future challenges and opportunities.

Approach: Papers published before November 2020 in the area of applying DL in PAI were
reviewed. We categorized them into three types: image understanding, reconstruction of the
initial pressure distribution, and QPAI.

Results:When applied in PAI, DL can effectively process images, improve reconstruction qual-
ity, fuse information, and assist quantitative analysis.

Conclusion: DL has become a powerful tool in PAI. With the development of DL theory and
technology, it will continue to boost the performance and facilitate the clinical translation of PAI.
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1 Photoacoustic Imaging

1.1 Brief Introduction to Photoacoustic Imaging

Photoacoustic imaging (PAI), also referred to as optoacoustic imaging, is an emerging imaging
technique that works in both the optically ballistic and diffusive regimes. In addition to providing
good contrast of blood vessels,1 PAI is also capable of functional (such as blood oxygen sat-
uration, sO2) and molecular imaging.2,3

PAI relies on the photoacoustic (PA) effect, which was first discovered by Alexander Graham
Bell in 1880 as a conversion of light intensity modulation into sound emission.4 The rapid devel-
opment of PAI in the past 30 years was incentivized by the maturation of laser and ultrasound
(US) technologies. In a common PAI setting, when biological tissue is illuminated by a short
optical pulse, a local temperature rise is induced, which in turn produces ultrasonic waves.
Acoustic detectors outside the tissue receive the PA signal and an image is subsequently
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reconstructed digitally to visualize the initial pressure rise distribution (which is closely related to
the optical absorption distribution).

1.2 Image Formation

PAI can be categorized into two types according to the image formation principle. The first is
photoacoustic microscopy (PAM),5 which is based on raster-scanning a focused ultrasonic trans-
ducer or a beam of focused light, to acquire an image pixel by pixel (each pixel is an A-line in the
longitudinal direction; resolution along the A-line is generated by acoustic delay). In this imple-
mentation, the received PA signal mainly comes from the focal line, thus all spatial information is
unmixed and no reconstruction is needed. The second type is photoacoustic computed tomog-
raphy (PACT),6 in which signals are detected by a multi-element transducer array (or by scan-
ning a single unfocused transducer). Each transducer element has a large acceptance angle within
the field of view, and a PA image can be reconstructed by merging the data from all transducer
elements. Popular arrays used in PACT include linear,7,8 ring (and partial ring),9,10 spherical (and
partial spherical), and planar arrays.11,12 Linear arrays are easy to operate and relatively cheap,
thus they were widely used for clinical applications. However, their angular acceptance is lim-
ited, resulting in poor image quality. In contrast, ring and spherical arrays have wider signal
acceptance, and typically they generate better images. Yet, due to geometrical confinement, these
arrays are often used for breast imaging and animal imaging and are relatively expensive. In all
cases, the US transducers are limited in temporal bandwidth. As a result, deprived of a significant
portion of spatiotemporal information, PAI is in constant need of better image reconstruction,
processing, and analysis methods.

Traditional methods for PACT image reconstruction include Fourier domain method,13,14 fil-
tered back-projection,15 delay and sum,2 time reversal,16,17 and model-based method.18,19 For
details about these methods, readers are referred to the review papers in Refs. 20 and 21. To
recover an image with high fidelity, all existing image reconstruction methods demand wide
coverage (preferably 4π solid angle), dense spatial sampling, and broadband temporal response.
Such stringent requirements impose tremendous challenges to the US detection hardware, and no
imaging system has met all these requirements to date, due to various technical and economic
constraints. The resultant image quality reduction and poor quantification have become major
roadblocks as PAI is being pushed into the clinics. Traditional image reconstruction methods
have shown limited performance in recovering the lost image information under non-ideal detec-
tion. One major motivation for introducing deep learning (DL) into PAI is to improve image
quality. Moreover, DL can provide a viable means to accelerate the speed of computation.

1.3 Quantitative PAI

The goal of quantitative PAI (QPAI) is to image concentrations of chromophores in tissue,
thereby important physiological information can be inferred.22 For example, blood oxygen sat-
uration is a biomarker of tumor malignancy.23 The distinct spectral features of oxy- and deox-
yhemoglobin in the near-infrared allow measurement of their concentration ratio by spectral
unmixing, enabling the quantification of oxygen saturation.24 In PAI, the initial pressure is a
product of the local absorption coefficient, the local Gruneisen coefficient, and the local light
fluence,25 i.e.,

EQ-TARGET;temp:intralink-;e001;116;194poðx; λÞ ¼ ΓðxÞϕðx; λÞμaðx; λÞ; (1)

where x and λ denote the spatial position and the illumination wavelength, respectively, ΓðxÞ is
the Gruneisen coefficient, which is a thermodynamic property of tissue, ϕðx; λÞ is the wave-
length-dependent light fluence, and μaðx; λÞ is the optical absorption coefficient to be determined
in QPAI. Since ϕðx; λÞ and μaðx; λÞ are globally coupled [any local change of μaðx; λÞ tends to
alter ϕðx; λÞ globally], QPAI is a highly non-linear and complex optical inversion problem.
Traditional forward light propagation models include the radiative transfer equation and its
approximation (e.g., diffusion approximation and δ Eddington approximation) and the Monte
Carlo (MC) method for light transport.22 Existing methods for conducting optical inversion in
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PAI to decouple the local fluence and absorption coefficient include linearization, direct inver-
sion, fixed-point iteration, eigenspectra decomposition, and model-based minimization.22,26

Nevertheless, the accuracy, robustness, and efficiency of these methods need further validation.
In recent years, DL has shown great potential in solving QPAI problems.

2 Deep Learning

2.1 DL and Convolutional Neural Networks

DL is a set of methods that utilize multiple processing layers to discover intricate structures in
high-dimensional data and has made great impact in computer vision,27 natural language
processing,28 knowledge graph,29 and medical image analysis.30,31

In DL, the data set used to train the network determines the generalization ability and robust-
ness of the learning model. As a result, data set construction is always a key issue in DL. Loss
function (LF) is used to measure how well the network completes the task during training. For
image processing, mean square error (MSE) is the earliest and most widely applied LF. Later,
some metrics for the evaluation of image quality, such as structural similarity index measure
(SSIM) and peak-signal-to-noise ratio (PSNR), were introduced as loss terms. Popular architec-
tures for DL include stacked autoencoders, deep Boltzmann machines, recurrent neural networks
(RNN), and convolutional neural network (CNN). Among them, CNN is the most commonly
used model in computer vision and image processing and has been studied extensively in PAI.32

A typical CNN architecture contains subsequent layers of convolution, pooling, activation, and
classification (full connection). The convolution layer generates the feature graph by convolving
the kernel with the input. Activation functions determine the output of some layers (e.g., con-
volution layer and full connection) by introducing non-linearity. Common activation functions
are sigmoid, tanh, rectified linear unit (ReLU), and ReLU’s variants such as Leaky. ReLU is one
of the most commonly used activation functions because of its strong non-linearity and the ease
of gradient calculation. The classification layer is generally a fully connected layer, which is used
to connect the feature map and the output. Normalization layers can be added between the

Fig. 1 The architecture of U-Net.34 Each blue box corresponds to a multi-channel feature map.
White boxes represent copied feature maps. Gray arrows indicate straight—connected path on the
same level.
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convolutional layers and the activation functions to speed up the training process and reduce the
susceptibility to network initialization. It applies a transformation that maintains the mean acti-
vation close to zero and the activation standard deviation close to one. The most commonly used
normalization method is batch normalization.

So far, many architectures of CNN have been proposed. Lee et al.33 summarized those that
were widely used in medical image processing. One popular architecture is U-Net, proposed by
Long and Shelhamer.34 In PAI, many published works were based on this architecture or its
variants.35–37 The basic U-Net architecture is shown in Fig. 1. The architecture consists of a
contracting path to capture context and a symmetric expanding path that enables precise locali-
zation. This allows the network to effectively extract image features at different levels with out-
standing performance for end-to-end tasks. The copy and crop paths (skip connections) make the
network more robust and can achieve better performance with fewer data.

2.2 Tools

2.2.1 Popular DL tools

With the rapid hardware and software development, DL is being rapidly implemented in various
fields. Popular open-source frameworks include: Caffe, Tensorflow, Theano, MXNet, and
Torch7/PyTorch/PyTorch2 and Caffe2.38,39 Many of these frameworks provide multiple interfa-
ces, such as C/C++, MATLAB, and Python. In addition, several packages provide advanced
libraries written on top of these frameworks, such as Keras. These tools enabled the widespread
applications of DL in various fields.

2.2.2 Tools for building data set

Since PAI has not been widely applied in the clinics, there are currently insufficient data sets for
deep neural network training. Consequently, common remedies to this problem include using
simulated data for proof-of-concept verification, or training the network before conducting trans-
fer learning with real experimental data.

The PA effect involves a light scattering process followed by an US propagation process. To
simulate US propagation, the k-space pseudo-spectral method can be used.40 It combines the
calculation of spatial derivatives (such as the Fourier collocation method) with a temporal propa-
gator expressed in the spatial frequency domain or k-space. k-wave is an open source acoustics
simulation toolbox for MATLAB and C++ developed by Treeby and Cox.41 It provides great
flexibility and functionality in PA simulation and can be used for time reversal-based image
reconstruction.42 Alternatively, one can solve the acoustic propagation equation using second
order finite-difference time-domain (FDTD) method or finite-element method,43,44 to this end,
COMSOL can be used.45

To simulate the light scattering process or to perform model-based spectral unmixing in
QPAI, the MC method or radiative transfer equation can be implemented as the forward model
(see Sec. 1.3). The MC method is considered to be the gold standard.46 It is also compatible with
parallel processing to reduce computational time. mcxyz is a GPU-accelerated MC simulation
tool to calculate light transport in optically heterogeneous tissues.47 MCXLAB is a MATLAB
package that implements the MC model. Alternatively, the radiative transfer equation or its
approximation can be implemented as the forward model. For example, assuming near-diffused
propagation of light dramatically reduces the need for computing power, thus fluence can be
calculated numerically by FDTD or finite-element method.46 Nirfast is an open source software
that allows users to easily model near-infrared light transport in tissue.48 COMSOL is a multi-
physics simulation tool based on finite-element analysis, which can also be used to calculate
light fluence distribution.45

In PAI, currently reported training data sets have been listed in Table 1. Most of them contain
MRI and x-ray CT images that can be transformed into PA images by simulation, whereas the
last one provides real PA images. Detailed information about the construction of numerical phan-
toms for PAI can be found in Ref. 61. DL is also used for segmenting different tissue types
when unlabeled data from other imaging modalities are applied for simulating PA raw data.62
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In addition, to improve preclinical image quality and accelerate PAI’s clinical translations, the
international photoacoustic standardization consortium is pushing forward an open-access plat-
form for standardized PA reference data.63

3 Applications of DL in PAI

Currently, applying DL in PAI has been extensively studied, and there are already several review
papers. In the review by Yang et al.,64 they used a schematic diagram to describe the relationship
between PAI tasks and the network architectures. Several open sources for implementing DL in

Table 1 Data sets commonly used in DL-based PAI

Data set Descriptions

Mammography image database
from LAPIMO EESC/USP

The database consisted of around 1400 screening mammography images
from around 320 patients.49

DRIVE dataset The database was used for comparative study of vascular segmentation in
retinal images. It consisted of 40 photographs, 7 of which showed signs of
mild early diabetic retinopathy.50

Optical and acoustic breast
database (OA-breast)

The database includes a collection of numerical breast phantoms
generated from clinical magnetic resonance angiography data collected
from Washington University in St. Louis School of Medicine.51

Digital mouse The database includes a 3D whole body mouse atlas from coregistered
high-quality PET x-ray CT and cryosection data of a normal nude male
mouse.52,53

Shepp–Logan phantom The Shepp–Logan phantom is a standard test image created by Larry
Shepp and Benjamin F. Logan for their 1974 paper “The Fourier
Reconstruction of a Head Section.”54

3D volume of CBA mouse
brain vasculature

The database includes a high-resolution volumetric and vasculature atlas
on CBA mouse brain based on a combination of magnetic resonance
imaging and x-ray CT.55

ELCAP public lung image
database

The database consists of an image set of 50 low-dose whole-lung CT
scans. The CT scans were obtained in a single-breath hold with a 1.25-mm
slice thickness. The locations of nodules detected by the radiologist are also
provided.56

Big data from CT scanning CT scans of several cadavers are provided. The data are collected at
Massachusetts General Hospital at multiple different radiation dose levels
for different x-ray spectra and with representative reconstruction
techniques.57

Tumor phantom in mouse
brain

The database is based on segmentation of a micro-CT scan of a mouse
brain into gray mater, vasculature, and dura mater. An artificial cancer
tissue was created by a stochastic growth process. https://github.com/
asHauptmann/3DPAT_DGD/tree/master/phantomData.

VICTRE project A series of toolkits include breast Phantom, breastCompress, and
breastCrop. Using breast Phantom, the digital breast with varying patient
characteristics (breast shape, glandularity and density, and size) can be
generated. https://github.com/DIDSR/VICTRE.

CBIS-DDSM (curated breast
imaging subset of DDSM)

The data set contains 2620 scanned film mammography studies including
normal, benign, and malignant cases with verified pathology
information.58,59,60

Mouse PACT37 The database consists of six athymic nude-Fox1nu mice (Harlan
Laboratories) in vivo PA images. Each mouse was scanned over 50 mm in
0.5 mm steps, with a total of 100 cross-sectional images covering the full
torso from the shoulders to the lower abdomen. https://github.com/
ndavoudi/sparse_artefact_unet/blob/master/dataset/getdata.sh.
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PAI were also listed. Andreas and Ben65 introduced the basic principles of DL and the PA image
reconstruction methods. They trained and tested the DL models with different architectures on
the same data set and demonstrated and compared their performance. Gröhl et al. summarized
and provided detailed statistics of the existing works in Ref. 66. Key insights for each type of
work were given from the authors’ perspective. This review aims at linking the technical diffi-
culties in PAI and the DL methods that are suitable to address them. We hope to help readers
understand how to build data sets and design suitable networks for their specific tasks.

The applications of DL techniques in PAI can be classified into three types of tasks: image
understanding, PA initial pressure reconstruction, and quantitative PA imaging. Tasks of the first
type involve using DL for PA image classification and segmentation. It also involves image
registration in various anatomical structures and tissues. This type of work is covered in
Sec. 3.1. Tasks of the second type focus on improving image quality under non-ideal detection
conditions, where common non-ideal conditions include: limited bandwidth, sparse spatial sam-
pling, and limited-view detection. In Sec. 3.2, we first talk about image reconstruction under a
single-non-ideal detection condition. Then how DL can be used to alleviate image degradation
associated with non-uniform speed of sound (SoS) will be introduced. Next, the complex sce-
nario when multiple non-ideal conditions coexist will be discussed, such situations are more
relevant to real applications. In this case, DL can be used to reconstruct PA images with better
fidelity, irrespective of the specific type of the information deficiency. Finally, we introduce how
DL can be used in conjunction with economical and portable PAI systems, such as single-chan-
nel data acquisition (DAQ) and light-emitting diode (LED)-based systems. For the last type of
tasks, DL is used to improve the quantification accuracy and calculation speeds in QPAI. These
works will be discussed in Sec. 3.3, where we first introduce how DL helps the calculation of
sO2, chromophore concentration, and fluence spectra, then we show that DL can be used to
select regions, in which QPAI calculation is reliable (which is in fact a segmentation task).

Figure 2 summarizes the structure of the above classification, which also highlights the
organization of this review. Most of the references cited in this review were searched in
Google Scholar with keywords “DL” and “PA”, “DL” and “optoacoustic,” “neural network”
and “PA,” “neural network” and “optoacoustic,” “machine learning” and “PA,” “machine learn-
ing” and “optoacoustic”, and we tried not to miss important works by checking all relevant
precursors of the original paper pool. So this review should cover DL-PAI works published
before November 2020.

Fig. 2 Diagram showing the applications of DL in PAI, and the structure of this review follows this
diagram.
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3.1 Image Understanding

Image classification and segmentation are basic tasks in image understanding. Using DL to do
auxiliary diagnosis and segmentation of lesion regions on PA images appeared in 2012.67 Unlike
traditional image segmentation, segmentation of PA images can be seen as a special reconstruc-
tion task and achieved a great result.68 Table 2 shows the PA image understanding tasks and the
networks applied. Here NN denotes “neural network” and “simple NN/CNN” refers to a NN/
CNN without a complex or specific architecture, such as squeeze-and-excitation (SE)-blocks,
residual layer, or dilated convolution kernel; “complex NN/CNN” refers to a NN/CNN with
complex or specific architecture but without a well-known name. U-Net and its variants are
called U-Net. The above naming rules apply to Tables 3 and 4 as well.

Auxiliary diagnosis is one of the most common applications of DL. As early as 2012,
Alqasemi et al.67 utilized a neural network as a classifier to facilitate ovarian cancer diagnosis
on US and PACT images. In this work, features for classification were extracted from PA images
by traditional methods (Fourier transform, image statistics, and composite image filters). Its
performance was not as good as support vector machine (SVM). In 2016, Rajanna et al.69 used
more features from the time and frequency domains of PAM images and applied three commonly
used activation functions to classify prostate cancer into three classes (malignant, benign, and
normal), achieving 95.04% accuracy on average. In these works, the authors used only a simple
NN as the classifier, rather than extracting features by using convolution layers or other deeper
network architectures. Consequently, the NN did not exhibit superiority over traditional
methods.

In 2018, Zhang et al.70 applied AlexNet and GoogLeNet to classify breast cancer on stimu-
lated PACT data. They achieved accuracies of 87.69% and 91.18% using AlexNet and
GoogLeNet, respectively. In comparison, the accuracy of SVM was only 82.14%. Data augmen-
tation and transfer learning were used to tackle data deficiency. They resized the images to fixed
sizes and took steps to amplify the data set on preprocessing, including scaling, cropping, and
random changing of the pixel value and contrast. The authors used pretrained AlexNet and
GoogLeNet, and only modified and retrained the fully connected layer for these classification
tasks.

Jnawali et al.71 used Inception-Resnet-V2 to detect thyroid cancer based on multi-spectral PA
images and also applied transfer learning to train the model. They used a special device con-
stituted by an acoustic lens and a rotary 1D detector array to perform C-scans. They used images
at three wavelengths (760, 800, and 850 nm) as the input and achieved promising results. The
area under the curve (AUC)133 was 0.73, 0.81, and 0.88 for cancer, benign nodules, and normal
tissue, respectively, on ex vivo data. Then the authors stacked twenty-one 2D PA image groups
taken at five different wavelengths to form a three-dimensional (3D) PA image cube, then used a
seven-layer 3D CNN and an eleven-layer 3D CNN for cancer diagnosis.73 During training, the
authors introduced a class-weight parameter to balance the distributions of positive and negative
samples in the training data.134 The best 3D model (11-layer 3D CNN) could detect cancer with
an AUC of 0.96 and the AUC of the 2D model was 0.72, which showed that 3D features could
provide more information and that deeper models seemed to have stronger feature extraction
capabilities. Based on this device, Dhengre et al.75 used several simple CNNs with the same
architecture, or a combination of the CNNs with SVM or random forest (RF), to classify malig-
nant, normal, and benign prostate hyperplasia prostate tissues (three binary classification tasks).

Table 2 Network architectures used in PA image understanding.

General task Specific task Network architecture

Image
understanding

Classification Simple NN;67,69 AlexNet;70 GoogLeNet;70 Resnet;71,72 Simple CNN;73,74

simple CNN combined with traditional classifier;74,75 and ResNet1876

Segmentation U-Net77,78 and simple NN applied in iterative method68

Motion correction Simple CNN79

Deng et al.: Deep learning in photoacoustic imaging: a review

Journal of Biomedical Optics 040901-7 April 2021 • Vol. 26(4)



The input of the network was a 105-timepoint A-line sequence in the region of interest. Involved
models were: simple CNN, SVM, RF, SVM with features extracted by CNN (CNN_SVM), and
RF with features extracted by CNN (CNN_RF). CNN_RF produced the highest sensitivity in
most cases (highest to 0.993).

For mesoscopy imaging, Moustakidis et al.74 used traditional machine learning methods
including ensemble learning methods and DL methods to identify skin layers in PA tomograms.
These images were gotten by raster-scan optoacoustic mesoscopy (RSOM).135 In addition to
applying simple CNN, they also used modified Alexnet and Resnet whose fully connected layer
and classification layer were replaced by principal component analysis (PCA) and RF to classify
3D image directly. The simple CNN provided a classification accuracy of ∼85%, which was the
best result in DL models. Nitkunanantharajah et al. used ResNet18136 to diagnose systemic scle-
rosis by identifying microvascular changes at the finger nailfold.76 The microvascular was also
imaged by RSOM and segmented manually. The network’s input was the 2D images generated
by frequency band equalization137 and maximum intensity projection. Transfer learning was
applied to train the model, which ultimately achieved an AUC of 0.897, a sensitivity of
0.783, and a specificity of 0.895.

DL also played an important role in PA image segmentation, where U-Net is the most suc-
cessful model. Chlis et al.77 applied an adapted sparse U-Net to perform vascular segmentation
on clinical multi-spectral PA images. They used a 1 × 1 2D convolution layer to transform an
image with 20 spectral channels (wavelengths from 700 to 970 nm in 10 nm steps) to a single-
channel image. The model was trained on in vivo data acquired using a handheld PA/US system.
The ground truth was established based on the consensus between two clinical experts. The
performance of the sparse U-Net was similar to the standard U-Net whose size was 30 times
bigger. They found that sparse U-Net was faster thus was more suitable for clinical application.
Berkan et al.78 also showed the U-Net’s performance on segmentation of the mouse boundary in
an (optoacoustic US) OPUS system. PA signal was detected by a 270-deg ring array and images
were reconstructed by BP. They used manually segmented images as the ground truth. The dice
coefficients on the cross-sectional images of the brain, liver, and kidney were 0.98, 0.96, and
0.97, respectively.

Boink et al.68 proposed a learned primal-dual (L-PD) model for simultaneous PA reconstruc-
tion and segmentation. Primal-dual algorithms are popular in tomography reconstruction.138,139

In their work, Boink et al. used a CNN-based model instead of the primal-dual hybrid gradient to
learn the best update in each iteration during model-based image reconstruction. It consists of
two networks: one for calculating the previous dual update and the other for calculating the
primal update, which corresponds to the initial pressure. Compared to convex segmentation140

and U-Net, the L-PD method yielded the best results. There were two major innovations: (1) the
data set was augmented by changing the number of detectors. (2) Deep-learning-based recon-
struction was used to perform image segmentation. In other words, the authors reconstructed
a segmentation map.

Motion artifacts and pixel dislocation are almost inevitable in optical resolution PAM of
in vivo targets. These are attributable to the breathing motion and heartbeat of the animal,
or to the positioning errors of the motor. Motion correction can improve the performance of
image understanding. Chen et al.79 proposed a simple CNN with three convolutional layers
to do motion correction. They employed it to process in vivo rat brain vessel images contami-
nated by motion artifacts. They found that the model’s performance was significantly improved
using a larger kernel size, at the expense of longer processing time. Compared with several
existing algorithms that are not based on DL,141–144 the proposed model demonstrated the best
performance.

3.2 Reconstruction of Initial Pressure Images

Traditional PA image reconstruction methods were introduced in Sec. 1. In brief, ideally a full
detection solid angle of 4π, sufficient spatial sampling frequency, infinite detector bandwidth,
and known distribution of the SoS, are the conditions for the traditional reconstruction methods
to work properly. But these conditions are rarely satisfied in real applications—US transducers
are non-ideal, and tissue properties can be complex and unknown—consequently, available
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information is inadequate for high-quality image reconstructions. The effects of information
deficiency on the image quality are shown in Fig. 3, where the target was obtained from the
DRIVE data set and simulated by k-wave.145 The applied reconstruction method is DAS. In
some cases, signal quality is sacrificed for various purposes such as system cost. For example,
LED are used to replace bulky lasers for system miniaturization.

DL methods were introduced to compensate for the above-mentioned signal deficiency.
These methods can be classified into five types: (1) preprocessing of channel data: the NN
is used to process the raw data, which is subsequently fed into a traditional reconstruction pro-
gram to produce an image. (2) Postprocessing of reconstructed images: the network is applied to
boost the quality of the images reconstructed by traditional methods. (3) Direct reconstruction of
the initial pressure: the network directly outputs the initial pressure image when channel data are
fed as the input. (4) Combining image reconstruction and postprocessing: the network improves
image quality based upon both low-quality images and raw channel data. (5) Embedding DL
in traditional reconstruction frameworks: use DL to perform certain calculations in traditional
reconstruction methods (for example, to calculate the update or regularization term in
model-based methods). Table 3 summarizes the network architecture for each kind of task and
each type of model.

The DL-based methods are often compared against traditional methods in terms of SSIM,
PSNR, Pearson correlation coefficient (PCC), mean absolute error (MAE), MSE, normalized 2D
cross-correlation (NCC), signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), and edge
preserving index. These quantities were also added into the LF for better training.

3.2.1 Single-non-ideal detection condition

Signal detections in PAI are often limited in bandwidth, sampling density, and angular coverage.
For example, although linear arrays are commonly used in clinical settings, they suffer from all
these limitations thus could only produce images with relatively low quality.146 In this section,
we review how DL is applied to improve the image quality of PAI, where the role of DL is to
compensate for the information loss due to one of the following: limited bandwidth, sparse sam-
pling, and limited-view angle.

Fig. 3 PA reconstruction quality is influenced by different non-ideal conditions: (a) gold standard;
(b) good-quality reconstruction (DAS); reconstruction with reduced quality due to (c) limited band-
width; (d) sparse sampling; (e) limited view; and (f) wrong SoS.
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Limited bandwidth. Transducer bandwidth affects both the axial and lateral resolutions.147

Commercially available US detectors for medical imaging are typically narrowband, in contrast,
PA signals are broadband, spanning from several tens of kilohertz to beyond a hundred
megahertz.20 Although capacitive micromachined ultrasonic transducers and optical transducers
may have larger bandwidth, they have not been widely adopted for PAI yet.148 A reduced band-
width inevitably results in the loss of important image features.

In 2017, Gutte et al. used a five-layer fully connected deep NN to broaden the bandwidth of
the channel data. The input and output of the network were both channel data (sinograms).80 The
authors trained the network on numerical breast phantoms and tested its performance by simu-
lated data (blood vessel network, Derenzo phantom, etc.) and real phantom data (horse hair
phantom and ink tube phantom). Compared with least-squares deconvolution in terms of PCC,
CNR, and SNR, the DL method almost tripled these measures in all the tests. Plus, it was almost
1.63 times faster than the least-squares deconvolution. In addition to deconvolving the frequency
response, DL was also used to synthesize a broader frequency response given multi-band signals.
Lan et al.81 used ConvU-Net, which was a modified U-Net with a kernel size of (20 × 3) and
a stride of (20 × 1) as skipped connections, to reconstruct PA images from sinograms interlaced
with signals individually acquired at three different center frequencies: 2.25, 5, and 7.5 MHz. It
is a direct reconstruction model: the input of this network was the raw signal from 120 channels,
containing three 40-channel subgroups that were distributed on a circle corresponding to the
three center frequencies and the output was the reconstructed images. The authors trained and
tested the network on numerical phantoms containing segmented vessels from fundus oculi CT

Table 3 Network architectures used in PA image reconstruction

Non-ideal condition
Pre-

processing Postprocessing
Direct

reconstruction
Combined

reconstruction

Embedded in
traditional

reconstruction

Single-
non-ideal
detection

Limited
bandwidth

Simple
NN80

U-Net81,82

Sparse
sampling

U-Net83–85 and
FD-Unet86,87

Simple CNN89

and complex
CNN90

Simple CNN88

Limited view U-Net91,92 and
VGG92

U-Net91 and
complex CNN93

Multiple
branches
autoencoder36

Non-uniform SoS Faster
R-CNN94–97

U-Net99,100

Simple CNN98

Multiple non-ideal
conditions

U-net101 U-Net;32,37,102

S-Net;32 WGAN
(based on
U-Net);103 and
simple CNN104

U-Net105 and
multiple
branches
autoencoder106

Ki-GAN (based
on multiple
branches
autoencoder)107

U-Net;108–110

FD-Unet;111

simple CNN;68,112

multiple branches
autoencoder; 113

and RNN114

Use of DL
in economical
and portable
PAI devices

Single-
channel
DAQ

Autoencoder
(based on
LSTM)115

LED-PAI Complex
CNN116 and
CNN&LSTM117

U-Net118–122
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imaging.145 ConvU-Net showed better image reconstruction quality than TR, DAS, and common
U-Net in terms of SNR, PSNR, SSIM, and relative error. Lan et al.82 then used two U-Net struc-
tures connected end-to-end to reconstruct images from the three frequencies data. The model
outperformed ConvU-Net in a series of tests.

Sparse sampling. The minimum spatial density to arrange detector elements is determined
by the Nyquist sampling criterion. The problem in which the actual detector density is lower than
the minimum required density is called sparse sampling. In many applications, spatial sampling
is sparse, due to various reasons such as system cost and imaging speed. Visually, sparse sam-
pling introduces streak artifacts and may jeopardize image resolution. Postprocessing models are
often applied to address such problems.

In 2017, Antholzer et al.83 used a U-Net to process PA images that had been reconstructed
by FBP based on sparse sampling data. The data were detected by 30 transducers evenly
arranged around a circle. The authors trained their network on simulated data where
Gaussian noise was added. Compared with the results obtained using FBP and the model-based
method on simulation data, the DL method yielded the best quality. In addition, postprocessing
by U-Net reconstruction required only 20 ms (FBP: 15 ms and U-Net: 5 ms) compared with
25 s for the model-based method. Guan et al. proposed a modified U-Net, termed FD-UNet,
in which each layer is connected with every other layer. It was also a postprocessing model to
remove streak artifacts. The original PA images were reconstructed by time reversal from
sparse data.86 The training and testing data sets were generated from three different digital
phantoms (circles, Shepp–Logan, and experimentally acquired micro-CT images of mouse
brain vasculature) on different levels of sampling sparsity. FD-UNet performed obviously
better than U-Net on PSNR and SSIM. When applied to the mouse brain vasculature data,
FD-UNet outperformed U-Net by recovering more details. After transfer learning was applied,
the networks’ performance was improved after fine-tuning with small and well-matched train-
ing data set. In 2020, Farnia et al.84 used a U-Net to process a PA image reconstructed using
time reversal. Deng et al.85 used SE-Unet, a modified U-Net with added SE-blocks149 in skip
connections, to remove artifacts in PA images reconstructed by BP. It got better results than BP
and Sta-Unet.91

For PAM, DiSpirito et al.87 used FD-UNet to reconstruct images of in vivo mouse brain
microvasculature blurred by under sampling. The fully sampled images were used as the ground
truth and the images down-sampled at a ratio of 5:1 in one scan direction were employed as the
input. Compared with U-Net, ResU-Net, and ResICL U-Net,150 FD-UNet had the best perfor-
mance in PSNR and MSE and was the second best in SSIM. FD-UNet also showed good robust-
ness, it did not require high image contrast, and performed stably well for images with different
down-sampling ratios. Zhou et al.90 proposed a CNN-based model to improve the quality of
PAM images suffering sparse sampling. Sixteen residual blocks and eight SE blocks were used
for feature extraction after the first convolution layer of CNN. They claimed that the residual
blocks performed well in super-resolution tasks and the SE blocks helped convergence.
Compared with Bicubic interpolation and EDSR (another CNN-based method),151 the new
method showed the best PSNR and SSIM on PAM images of leaf veins and in vivo data (blood
vessels of the mouse eyes and ears).

Except U-Net, Awasthi et al.89 used a seven-layer network to achieve super-resolution and
denoising on the channel data. The training dataset was simulated by the CHASE,152 DRIVE,145

and STARE153 databases. Their simulation involved 100 detectors, and Gaussian noise (SNR to
20∕40∕60 dB) was added. They then spatially down-sampled the data by a factor of 2, resulting
in a reduced channel number of 50. Finally, the down-sampled data was interpolated to recover a
total channel number of 100 as the input. The output of the network was the residual between the
interpolation result and the initial signal detected by all the detectors. On average, the network
reduced RMSE by 41.70% while increased PSNR by 6.93 dB on simulated data (numerical
blood vessel and Derenzo phantoms) and in vivo data (rat brain).

Image reconstruction incorporating DL and model-based methods have been also explored.
Antholzer et al.88 developed a simple NN consisting of three convolutional layers to calculate
the regularization term in model-based image reconstruction, termed network Tikhonov
(NETT). They built a training set of input/output pairs, in which the inputs were images
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reconstructed by FBP from under sampling data and the outputs were the differences between
the predicted signal and the ground truth to train the regularization. When the input was the
ground truth, the output was zero. Compared with FBP, a compressed sensing method with
l1-minimization,154 a model-based method with H1-regularization, and U-Net (used as a post-
processing method), NETT produced the best results with noise-free data and satisfactory
results with noisy data.

In this section, we show how DL can remove artifacts generated by sparse sampling. Similar
approaches were reported by Schwab et al.155 and Guan et al.111 Since these works deal with
situations beyond merely sparse sampling, they will be discussed in Sec. 3.2.3.

Limited-view detection. Incomplete angular coverage can distort image features by par-
tially losing information and generating artifacts. The problem is frequently encountered in PAI
and is termed “limited view.” Starting from 2018, DL has been extensively studied to solve the
limited-view problem. Because in the missing cone signal is completely lost, tackling limited
view is more of a super-resolution than a deconvolution problem.

In 2018, Waibel et al. investigated both postprocessing and direct reconstruction to solve the
limited-view problem.91 They used a U-Net to do postprocessing, and a modified U-Net with an
additional convolutional layer that resized the information to the target resolution in skip con-
nections, to reconstruct PA image directly. In their simulation, the PA signals generated by cir-
cular and elliptical targets were detected by a linear array. The median relative estimation error
improved from 98% (DAS) to 10% (postprocessing) and 14% (direct reconstruction). The direct
reconstruction method was faster than postprocessing because it did not need the DAS step.
Deng et al. proposed a postprocessing method, in which they built an in vivo data set and used
two DL models to improve in vivo image quality. They utilized the PA signal acquired by a ring
array to generate the data set.92 The PA images reconstructed from a full ring were used as the
ground truth, and images reconstructed from a partial ring (1/4 ring, 90-deg coverage) were used
as the images with limited-view artifacts. (A similar approach was demonstrated by Davoudi
et al.37 and will be discussed in Sec. 3.2.5.) They used U-Net to postprocess the images recon-
structed by DAS. They also mapped the full-view images, all taken at the liver region of the
mouse, into a multi-dimensional space (20 in their work) and calculated the bases and their
weights by PCA. VGG was then used to establish the mapping between the projection weights
of the full-view and the limited-view images. These models all produced satisfactory results.

For direct reconstruction, Anas et al.93 proposed a model on the basis of CNN. They used
dilated and large convolution kernels at higher layers to obtain global information to prevent
resolution loss. They performed simulations (using circular targets) to train, validate, and test
the network. This model could obtain a nearly 8.3 dB increase of PSNR. Lan et al. proposed a
hybrid autoencoder model, called Y-Net. It consists of two intersecting encoder paths that got
information from reconstructed images or raw data to solve the limited-view problem in linear
array PAI systems. The authors compared the performance of Y-Net with that of time reversal,
DAS, and U-Net (postprocessing) in terms of SSIM, PSNR, and SNR on simulated data and
experimental data (chicken breast tissue inserted with two pencil leads and a in vivo human
palm), Y-Net got the best results. Moreover, Y-Net achieved a better “transfer” ability than
U-Net because it referred to information in the raw data.

There are works that addressed both the sparse sampling and limited-view issues as will be
introduced in Sec. 3.2.3.

3.2.2 Non-uniform speed of sound

The SoS in biological tissues is generally non-uniform, with unknown spatial distributions. In
addition, a SoS mismatch often exists between the biological tissue and its surrounding medium.
In all cases, if instead a constant SoS is assumed during the image reconstruction process, arti-
facts will be generated (such as feature splits). Moreover, a large SoS discontinuity (e.g., between
muscle and bone) is bound to create acoustic reflections. The reflected signals can mix with the
PA signal to introduce reflection artifacts. Recent studies have shown the great potential of DL in
solving the acoustic heterogeneity problem in PAI. Researchers first treated non-uniform SoS
as a target identification problem, addressing whether an image feature is real or fake.
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Other researchers used DL to reconstruct images directly or to perform postprocessing on PA
images originally generated using traditional methods.

In 2017, Reiter and Bell98 trained an eight-layer simple CNN to predict realistic images (point
targets) in heterogeneous media directly from raw data. The model achieved satisfying results
(mean axial and lateral point location errors of 0.28 and 0.37 mm, respectively) at various sound
speeds (1440 to 1640 m∕s), target locations (5 to 25 mm), and absorber sizes (1 to 5 mm) using
simulated data. This work predicted the point locations successfully but failed to identify
whether the wave front was from the actual target or the reflection of the target. Allman et al.
implemented a series of faster R-CNN models based on VGG, Resnet-50, and Resnet-101 to
decide whether the identified features were actual targets or reflection artifacts in PA images
reconstructed by DAS.94–97 Faster R-CNN is an object detection framework based on deep con-
volutional networks. It can provide bounding boxes and confidence scores for target detection. In
their works, faster R-CNN output the type of the objects (i.e., source or artifact), along with their
locations in the form of the coordinates of the bounding box and a confidence score between 0
and 1 for each object. The authors trained their models on simulated data and tested them using
phantom data, in vivo data (an optical fiber in a pig vessel) and ex vivo data (a needle tip inserted
into tissue). PA signals were detected using a linear array. Faster R-CNN was able to accurately
identify and locate the targets. All three DL models produced satisfactory results on phantom
data and ex vivo data. For in vivo data, the residual network architectures correctly classified
83.3% (Resnet-50) and 88.8% (Resnet-101) of the sources. The authors suspected that a deeper
network (i.e., residual network) has a greater capacity to learn higher-level features.

Other than point targets, DL was also studied to deal with acoustic heterogeneity for general
targets and these are all postprocessing models. In 2019, Shan et al.99 used a modified U-Net for
postprocessing images after the first iteration of a model-based algorithm. The input of the U-Net
was the feature map extracted from the PA images by a four-layer CNN, whereas the output of
the U-Net was processed by a network consisting of four deconvolution layers as the final recon-
structed image. They added image structure information (SSIM) in the LF. The authors trained
the network and tested its performance using data generated based on cadaver CT scans. In their
simulations, they randomly picked a circular region where SoS was set to be high and introduced
a sinusoidal change of SoS in the background tissue. And 0%, 10%, 20%, 30%, and 40% noise
was added to the PA signals. The DL method produced the best results compared to that of TR
and other popular iterative algorithms, such as averaged time reversal (ATR),156 adjoint ATR,157

and Landweber iteration.158 In addition, without doing iterations, the DL method was the fastest
among all compared algorithms. To compensate for the SoS heterogeneity, Jeon and Kim100

proposed an autoencoder model whose architecture was similar to U-Net. The data were also
contaminated by noise and beamformed with various SoS to generate the multi-channeled input
data (eight channels with eight speeds). The ground truth image was obtained by reconstructing
the noise-free data with the correct SoS. The model was able to remove image artifacts asso-
ciated with acoustic heterogeneity, even though it had never been trained with the correct SoS
map on in vivo data (forearm). In addition, the model was also effective in reducing side lobes
and noise.

3.2.3 Multiple non-ideal conditions

In Secs. 3.2.1 and 3.2.2, we have shown that DL can be used in applications where a single-non-
ideal detection condition dominates. In real cases, often times the combination of several such
conditions may conspire to reduce the image quality. We have shown that certain DL networks,
such as U-Net and its variants, were successfully applied to deal with individual factors including
sparse sampling, limited view, and acoustic heterogeneity. Consequently, such networks are
expected to be applicable when several of these factors simultaneously take effect. Here we
introduce DL methods that work in conditions where multiple non-ideal factors co-exist.
These techniques are more promising for practical uses.

In this section, we will first introduce the preprocessing and postprocessing models. Second,
direct reconstruction models will be discussed. Third, we will introduce the combined models
that use raw data and reconstructed image as inputs. Finally, we will introduce how DL can be
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used in conjunction with traditional reconstruction methods, for example, DL networks can be
used to calculate the sum in DAS or compute the update in model-based methods.

For preprocessing models, Awasthi et al.101 proposed a modified U-Net for super-resolution
and bandwidth extension. Named U-Net (hybrid) and directly working on the channel data, the
proposed network used exponential linear units (ELUs) as the activation function in the final
layers and used ReLUs in other layers.61 The input of the network was the signal detected by
100 bandwidth-limited detectors, and then the data were interpolated to 200 channels employing
the nearest neighbor method. The ground truth data were generated with 200 full-bandwidth
detectors. They divided the channel data into small subsections, the size of each subsection was
64 × 64. The network only processed one such subsection at one time. Compared with SRCNN,
U-Nets (implementing only ReLU or ELU), direct interpolation, and automated wavelet denois-
ing,159 the proposed network got the highest SNR for phantom data (horse hair) and in vivo data
(rat brain).

In an attempt to apply DL to the postprocessing of PA images, Antholzer et al.32 used a U-Net
and an S-Net (simple network consisting of three layers) to enhance PA images originally recon-
structed by FBP in limited-view and sparse-sampling conditions. In the numerical study,
24 sensors were located on a non-closed curve (less than a semicircle). Both networks were
successful in removing most of the artifacts. The more complex U-Net produced better results
but also took a longer time to train and process the images. Davoudi et al.37 also employed U-Net
to perform postprocessing on sparse sampling and limited-view images. They obtained a full-
view image from a full-view tomographic scanner with 512 transducers in a circle as the ground
truth. Sparse-sampling and limited-view data were gotten by down sampling. The training data
set was constructed using images of 6 mice with 100 different cross sections from each. Their
model produced satisfying results on in vivo data, as shown in Fig. 4. The authors also made their
data set available online.

Godefroy et al.102 introduced the Bayesian machine learning framework into PA image post-
processing Bayesian machine learning framework into PA. They applied MC dropout as a
Bayesian approximation in U-Net.160 So the model was able to generate 20 different outputs
for the same input. The input was the images reconstructed by DAS, and the prediction image
was the mean of the different outputs. In their experiment, PA images taken by a linear array were
used as the input, and the photographs taken by a CMOS camera were used as the ground truth.
Test results showed that the model effectively improved NCC and sSSIM and was more robust
than networks without dropout.

Vu et al.103 used Wasserstein generative adversarial network with gradient penalty
(WGAN-GP) to do postprocessing on PA images to remove artifacts due to limited-view and
limited-bandwidth detection. The generator in WGAN-GP took the form of a U-Net, and the
discriminator of this model was a common CNN. The discriminator was trained to identify the
ground truth from the generator’s output. The generator’s input was the PA image reconstructed
by TR. They used a complex LF to train the network. It was the sum of three factors: (1) the
distance between the discriminator’s output and the true distribution. The Wasserstein distance
was employed here to take advantage of its capability in describing morphological character-
istics. (2) The GP, which could avoid gradient explosion or disappearance. (3) The MSE loss,
which helped preserve the information in the reconstructed images. In simulation, phantom, and
in vivo experiments, WGAN-GP all showed slightly better performance on SSIM, PSNR, and in
recovering low-contrast structures than U-Net.

Zhang et al.104 developed a nine-layer CNN to solve the under-sampling and limited-view
problems on PA images reconstructed by UBP. The PA signal was detected by a three-quarter
ring transducer array with 128 elements. The network was trained on simulated 3D vascular
patterns. They also trained and tested a compressed sensing model and in all numerical, phan-
tom, and in vivo experiments, the CNN got better results.

For direct reconstruction, in 2020, Feng et al.105 used a Res-UNet network to reconstruct PA
images. In their work, signals were detected by 128 transducers covering an angle of 270 deg
around the imaged object. They added a residual connection on the layer of a U-Net and a con-
volution layer was introduced as a copy-and-crop path in the network. Generalization of the
ResU-Net network was achieved by imaging six types of synthetic phantoms, including discs,
breads, spiders, lines, logos, and natural pictures. They compared the network’s performance
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with U-Net on digital and physical phantoms. Res-UNet got the best PC and PSNR on digital
phantom and the images with the least artifacts on physical phantom. Inspired by the fact that
FBP takes the time derivative of the signal as input, Tong et al.106 proposed a feature projection
network (FPnet) to reconstruct PA images based on limited-view and sparsely sampled data. Its
architecture resembled that of Y-net with the two input branches fed with the channel data and
the time derivative of the channel data, whereas the output was the initial pressure image. Then
they used U-Net to do postprocessing on the image. The outputs of FPnet and U-Net were trained
on simulated and in vivo data to match the ground truth. The hybrid model showed better results
compared with: (1) FPnet only, (2) postprocessing (by U-Net) images reconstructed by FBP, and
(3) other traditional methods (FBP and model-based).

Lan et al. proposed a knowledge infusion generative adversarial network (Ki-GAN). As a
combined network, Ki-GAN had two branches, which got information from reconstructed
images and the raw data.107 Compared with Y-net, Ki-GAN had a more complex architecture.

Fig. 4 The results of Davoudi et al.’s method. (a) Reconstructed image with under sampled (32
projections) data versus its artifact-free counterpart obtained with the trained network. TP, true
positive; FP, false positive; TN, true negative; and FN, false negative. (b) Another example for
under sampled data with 128 projections. (c) Top: image reconstructed with 60-deg angular cover-
age and its respective amplitude spectrum. Bottom: output image of the network and its corre-
sponding amplitude spectrum. (d) Top: image reconstructed with 135-deg angular coverage
and its respective amplitude spectrum. Bottom: output image of the network and its corresponding
amplitude spectrum.
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A knowledge embedding branch (KEB, which is a CNN with a three-layer inception block archi-
tecture) was used to extract information in the generator. Information from the two branches
were merged by a four-layer CNN to reconstruct the final image. The architectures of Ki-GAN
and KEB are shown in Figs. 5(a) and 5(b). The discriminator penalized the texture at the scale
of patches.161 The model implemented an information-rich LF in the form of the linear combi-
nation of several MSE loss terms to improve feature extraction. Compared to Ki-GAN with
DAS, U-Net (including direct reconstruction and postprocessing), and the iteration method
(10 steps), Ki-GAN yielded the best results in terms of SSIM, PSNR, and SNR. The results of
the in vivo experiment are shown in Fig. 5(c). Meanwhile, Ki-GAN was much faster than the
iteration method (0.025 versus 331.51 s).

In traditional PA image reconstruction, certain computation tasks can be accomplished using
DL for stronger fitting capability and faster speed. For example, DL can be applied to learn the
parameters of traditional reconstruction methods. Dynamic aperture length (DAL) correction is
one solution to the non-ideal detection problem.162,163 In 2018, Schwab et al. proposed a frame-
work named DALnet, in which an image was first reconstructed by UBP with DAL correction,
and then processed by a CNN network (U-Net with a residual connection) to address the limited-
view and under-sampling problem.108 The weights of the DAL correction and the U-Net were
jointly trained. The output of the model was compared with those of UBP and a model-based

Fig. 5 The architecture of Lan et al.’s model. (a) The overall architecture of Ki-GAN; KEB repre-
sents convolutional layers; DAS: delay and sum reconstruction. (b) The detailed architecture of
KEB. (c) PA images of rat thigh reconstructed by iterative algorithm with 10 iterations (column 1),
U-Net (column 2), and Ki-GAN (column 3).
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method in terms of total variation, and DALnet was superior in both image quality and comput-
ing speed. After this work, Schwab et al. also proposed a similar network to learn the weights in
UBP to improve the PAT image quality under limited-view and sparse-sampling conditions.155

The network only had two layers. The first layer received raw data as input and carried out
temporal filtering without any trainable weights, and the second layer performed back projection
with adjustable weights. The following conditions were considered: limited view, sparse sam-
pling, and limited-view plus sparse sampling. The network-assisted UBP reduced the relative
errors of conventional UBP from 0.2002, 0.3461, and 0.3545 to 0.0912, 0.1806, and 0.1649, in
the three conditions, respectively.

Other approaches of combining FBP/DAS with DL have been developed as well. Under the
non-ideal detection conditions, DL has been used in FBP/DAS to replace the sum operation to
restore some of the lost information. Guan et al.111 proposed a DL model called pixel-wise DL
(Pixel-DL) for image reconstruction under limited-view and sparse sampling conditions. In
Pixel-DL, they back-projected the interpolated channel data to the image grid using a constant
SoS. Then the projected data group consisted of multiple channels were put into FD-UNet for
image reconstruction. The authors compared the performance of Pixel-DL to those of other PAT
image reconstruction methods, including TR, iterative reconstruction, post-DL (using FD-UNet
to process an image reconstructed by TR), and modified Direct-DL (using FD-UNet to recon-
struct PA image from raw data). Pixel-DL generated comparative results with the iterative
method, and both were better than the rest. In 2019, Kim et al.109 employed the same concept
and proposed a model using U-Net to reconstruct images in a linear array setting. The authors
reformatted the detected PA signals into multi-channel 3D (tensorial) data using prior knowledge
about the acoustic propagation delays and utilized a U-Net model to produce reconstructed
images. Compared with DAS, DMAS,164,165 model-based, and U-Net (for postprocessing),
the new model produced the best results when applied to simulated data. For the phantom and
in vivo data, the model provided superior contrast and resolution.

The model-based methods can be used to reconstruct images in the non-ideal detection con-
ditions. In some cases, high-quality images can be produced and used as the ground truth.108

However, implementation of model-based reconstructions is often iterative, making them time-
consuming; to accelerate their speeds, DL models can be used.

Hauptmann et al.112 proposed a deep NN that learned the entire iteration process of a model-
based reconstruction algorithm for limited view and sparse sampling. The method was called
deep gradient descent (DGD). The current result and the gradient of the LF were used to calculate
the output of the next iteration by using a five-layer CNN. The network used a greedy approach,
in which every network output was used to match the ground truth. The planar array used in the
study inherently had a limited view, and sparse sampling was performed by a 16× random selec-
tion of transducer elements. When applied to simulated data, after two iterations DGD was able
to match the image quality of the traditional iterative method after 50 iterations. Transfer learning
was used to advance the training for the in vivo data. They used fully sampled images recon-
structed by the model-based method as the gold standard. The DGD after retraining produced
satisfactory results. In addition, the iterative methods seemed to be more robust than U-Net,
which was more sensitive to data variations. Later, Hauptmann et al.110 proposed a modified
DGD, called fast-forward PAT, which employed a multi-scale network, like a shallow U-Net,
to update the results. According to the test, with 4× subsampled data, FF-PAI with five itera-
tions produced comparable results to the model-based method with 20 iterations. Compared
with the conventional model-based method, FF-PAI reduced the computation time by a factor
of 32. Boink et al.68 proposed an L-PD model to perform image reconstruction and segmentation
simultaneously using the same network, and their method has been introduced in Sec. 3.1.
The result of image reconstruction and segmentation was generated in the first and second
channel, respectively. According to the authors, L-PD produced better results than FBP,
model-based method with TV, and postprocessing with U-Net, when noise and sparse sampling
were concerned.

Shan et al.113 developed a CNN-based model to reconstruct the SoS and initial pressure
jointly using the framework of the model-based method. The updates of initial pressure and
SoS were computed based on three types of input: (1) the initial pressure distribution, (2) the
negative gradient of the L2 distance between the reconstructed image and the ground truth, and
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(3) the current SoS distribution. Feature extraction, feature fusion, and image reconstruction
were all processed by the CNN. The model produced satisfactory results, where the MAE for
SoS and the initial pressure were, respectively, ð0.85� 0.33Þ × 10−2 Pa and 1.24� 0.52 m∕s
(mean ± std) after four iterations on simulation data.

Yang et al.114 proposed a recurrent inference machine (RIM) based on an RNN to cal-
culate the update in each iteration step. The reconstruction results and the gradient of the
objective function (optimization equation) were used as inputs for the next iteration step.
Gated recurrent unit was used in this network.166 This unit has an update gate and a reset
gate to avoid information loss. The first iteration input was calculated by multiplying the
detected signal by the adjoint of the acoustic transmission matrix. The authors compared
their results with those obtained using the DGD algorithm with five iterations, and RIM pro-
duced slightly better result. Compared with U-Net, RIM reduced the number of parameters by
almost fourteen times.

3.2.4 Use of DL in economical and portable PAI devices

DL was applied in some PAI systems to help achieve device miniaturization, cost reduction, and
image quality improvement. Wewill first introduce how DL helps to reconstruct images based on
single-channel DAQ. Then we will show how DL is used to enhance image quality in situations
where the light intensity is low (e.g., when LED are used), and the role of DL can be seen as
performing segmentation between target and noise. Again, U-Net and its variants are the most
popular architectures used.

In 2019, Lan et al.115 developed a PACT system to provide real-time imaging. The imaging
system consisted of 120 sensing elements connected to a DAQ unit with only a single channel. In
their system, the 120-channel signals were overlaid directly into 4-channel signals before being
fed into a delay-line module, allowing the signals to be temporally separable and combined into a
single channel. Subsequently, the final output (single channel) could be separated into four chan-
nels, from which the authors used a DL network to reconstruct the PA images. The architecture
of the network was also an autoencoder where the encoder was LSTM and the decoder was
CNN. They were connected by fully connected layers. Compared to DAS with 120 channels,
the proposed model could perform image reconstruction faster (28 versus 159 ms) with satis-
factory result on phantom data (four black balls in agarose gel). This demonstrated the potential
of the single-channel DAQ for high-speed low-cost operation.

Pulsed laser diodes (PLD) and LED are stable, affordable, and compact alternative light
sources for PAI. However, their output energy is low, typically in the range of nJ/pulse to
μJ∕pulse.118 The low energy leads to low signal intensity and thus reduced image quality.
A favorable property of PLD/LED is that they have high repetition frequency, typically on the
order of kHz and above. A common method for denoising is averaging, at the expense of tem-
poral resolution. Yet, even with averaging the image quality of the PLD/LED-based systems is
suboptimum compared to their bulk-laser-based counterparts.

In 2018, Anas et al. proposed a model that consisted of series of dense convolutional layers167

to improve the quality of a 2D LED-based PA image.116 In addition to the final output, it also has
two outputs in the middle layers that were all fed into LF to train model. A number of raw data
frames were averaged and reconstructed by DAS as input. The model could increase frame rate
by 6 times compared to the conventional averaging approach, with a mean PSNR of 34.5 dB and
a mean SSIM of 0.86. Then Anas et al.117 combined CNN and ConvLSTM to improve the quality
of these images. Its architecture is shown in Fig. 6(a). The inputs of the network were a sequence
of PA images. The model used CNN to extract spatial features, whereas ConvLSTM168 was
employed to exploit the temporal correlation among the images. The input is a sequence of
averaged PA images. In a phantom experiment (phantom: a wire and a tube filled with gold
nanoparticles), the network increased the frame rate by 8.1 times compared to the CNN-only
method.

Kerrick et al.119 also proposed an encoder–decoder with atrous convolution (called as
Nyquist convolution) on input layer to predict the location of circular chromophore targets
in tissue mimicking a strong scattering background. It can achieve micron level accuracy
on simulated data. For in vivo data, the network significantly improved the image quality.
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In 2019, Johnstonbaugh et al.120 also proposed an encoder–decoder model for the direct recon-
struction of point targets under low illumination intensity. The model was based on U-Net whose
architecture is shown in Fig. 6(b). In each of the last two layers, a high field-of-view convolution
module (5 × 5) was applied in between the encoder and decoder. The down sampling designs
(Nyquist convolution) reduced the network size and sped up the calculations. The model suc-
cessfully imaged a deep vessel target with an accurate estimation of its position on AcousticX
system, while the corresponding image reconstructed by FBP was noisy and difficult to interpret.
The model also produced good multi-target localization results.

For postprocessing tasks, U-Net was typically used. Hariri et al. used a modified U-Net,
termed multi-level wavelet-CNN, in which the pooling operations were replaced by discrete
wavelet transform (DWT), and pooling operations were replaced by DWT, and the upsampling
operations were replaced by inverse wavelet transform, to enhance PA image quality in a low
SNR setting.118 They used the PA images taken at a fluence of 17 mJ∕pulse as the ground truth
and then reduced the laser fluence down to 0.95 and 0.25 mJ∕pulse to train the network. In
in vivo experiment, mice injected with various concentrations of methylene blue (MB) were
imaged, and the CNR improvement factor was 1.55, 1.76, 1.62, and 1.48 for a dye concen-
tration of 0.05, 0.1, 1.0, and 5.0 mM, respectively. Similarly, Singh et al. used a U-Net network
to enhance the image quality of LED-based PAI.121 The targets were small tubes filled with MB
or indocyanine green (ICG) in a water bath. PA images were obtained using one LED system
and two OPO systems. The network was trained with images obtained by the two OPO systems
and tested with images acquired by the LED-based system. The DL network improved the
SNR by ∼30%. Manwar et al.122 also reported a similar idea and used U-Net to enhance the
SNR of deep structures in brain tissue. They got B-scan images from an ex vivo sheep brain by
a linear array at 20 and 100 mJ as the input and the label, respectively. They also evaluated
several LFs including MAE, MSE, SSIM, multi-scale SSIM (MS-SSIM), and some combina-
tions of these factors (MS-SSIM + MSE and MS-SSIM + L1). The network can enhance image
quantity effectively, and the networks with combined LF got better performance. To improve
SNR, some novel network structures can be used, such as denoising convolutional neural
network.169

3.3 Quantitative Photoacoustic Imaging

With known spectral profiles of the major tissue chromophores, the goal of QPAI is to image the
concentrations of the molecular targets through a process known as the optical inversion. Because
of wavelength-dependent light absorption and scattering, the fluence spectrum in deep tissue is
unknown, thus the absorption spectrum cannot be directly inferred from the PA spectrum.
Traditional QPAI strategies often rely on overly ideal assumptions, such as piecewise constant
optical properties, a priori knowledge of scattering coefficients, and homogeneous (and known)
background optical properties.22,35 Among the developed methods, model-based iterative

Fig. 6 The architecture of (a) Anas et al.’s network and (b) Johnstonbaugh et al.’s network. Details
of the residual convolution module and the upsampling module are also provided.
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optimization can provide relatively accurate solutions but are time-consuming and sensitive to
quantification errors in the PA images.170,171 Diffuse optical tomography can facilitate fluence
distribution estimation but tends to increase system complexity and cost.172 In recent years,
DL methods were applied to solve the QPAI problem with great success. The main reason why
NNs are suitable for QPAI is that they are good at solving non-linear problems. Autoencoder with
the end-to-end architecture is suitable for QPAI, in which the input is the PA images acquired at
different wavelengths, whereas the output is the concentration map of the target molecules. In
these tasks, U-Net and its variants as well as fully connected networks were commonly applied.
Most of the works involved estimating the concentration maps for the whole tissue or manually
segmented regions of interest. However, the prediction results were poor in areas with weak opti-
cal absorption. It would be beneficial to extract trusted regions with sufficiently high SNR for
quantitative analysis. The DL-assisted QPAI tasks and applied networks are shown in Table 4.

In 2017, Kirchner et al.173 used an ML method based on random forest regression to perform
fluence estimation and tested its performance using simulated data. The method relied only on
the local PA signal near the target and did not make use of either the global information or any
feature extraction schemes such as deep NNs. In 2018, Cai et al.35 applied an end-to-end NN for
the simultaneous imaging of oxygen saturation (sO2) and concentration of ICG using multi-
wavelength PA images as input, taking advantage of DL’s strong ability to represent complex
mapping. Their network, shown in Fig. 7(a), was a modified U-Net with embedded residual
structures. According to their simulation, the mean estimation errors of sO2 and ICG concen-
tration were 0.76% and 3.26% for the circular phantom, and 0.51% and 7.51% for the digital
mouse. The imaging result of the digital mouse is shown in Figs. 7(b) and 7(c). This model
exhibited certain immunity to noise with relative error as low as 1.43% (20 dB SNR) and
16.8% (10 dB SNR). Hoffer-Hawlik et al.123 developed absO2luteU-Net, which used a new
activation function with ELU instead of the ReLU in U-Net to calculate sO2 based on dual-color
PA image (700 and 900 nm). The model produced an RMSE and SO-RMSE of 4.49% and
18.4%, respectively, compared to 75.5% and 64.8% by linear unmixing. AbsO2luteU-Net

Fig. 7 (a) The ResU-Net architecture implemented by Cai et al. (b) Simultaneously reconstructed
sO2 map (gray) and ICG concentration (color). (c) Absolute sO2 error (gray) and relative ICG con-
centration error (color). Scale bars: 5 mm.

Table 4 Network architectures used in QPAI

Task categories Network architecture

Calculate sO2, chromophore concentration,
or fluence spectra

U-Net,35,123–129 Autoencoder,130 Simple NN,131 and
LSTM&CNN applied in traditional methods132

Generate mask for trusted zones U-Net127–129
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exhibited surprisingly low-noise sensitivity, the pixel-wise RMSE remained <6% when the SNR
varied from 0 to 20 dB. Chen et al.124 used a U-Net with the leaky ReLU activation function to
calculate optical absorption. The input of network is the reconstructed images obtained at a
single wavelength, and the output is the optical absorption map. The LF used was the summation
of MSE and the TV regularization term. The relative error of the outputs in different absorption
backgrounds was <10%.

In addition to the simple U-Net, Yang et al. presented a combination model, called deep
residual and recurrent NN, to estimate sO2 from the initial pressure images taken at two
wavelengths.125 The networks used complex layers including convolution branch and residual
branch in U-Net. According to simulation, the error generated by the network was as low as
1.43% compared with 62.39% by linear unmixing. Because only two wavelengths were used,
the estimation process took only 18.4 ms. In 2019, Yang et al.126 proposed a complex autoen-
coder called EDA-net, which was intended specifically for QPAI to achieve accurate quantifi-
cation of sO2 from PA images acquired at 21 wavelengths (700 to 800 nm in 5-nm steps).
EDA-net had an encoder path to extract information, a decoder path to accept feature images
and calculate sO2, and several aggregation nodes to mix information. They were built by con-
volutional layers. Each layer of the encoder path was connected to each layer of the decoder path
by aggregation nodes. Compared with linear unmixing, ResU-Net, U-Net++,174 and EDA-net
were superior. The authors also found that when the number of wavelengths was increased to
more than nine, the mean error did not decrease significantly. In addition to this automatic
encoder structure (including U-Net and its variants), Gröhl et al.131 used a nine-layer fully con-
nected NN to reconstruct sO2 from initial pressure images with 26 wavelengths (700 to 950 nm,
step size 10 nm) in 2019. The model operated in a pixel-wise manner, meaning that local infor-
mation, rather than global information, was employed. For in vivo data of porcine brain and
human forearm, the network’s output of 90% and 98% was close to the expected arterial blood
oxygenation values of healthy subjects compared with linear unmixing (68% and 80%, respec-
tively). This was the first attempt to apply DL on in vivo QPAI data, and the results were superior
to those obtained using linear spectral unmixing.

Durairaj et al.130 proposed an unsupervised learning approach for PA spectral unmixing.
Their model included two networks: an initialization network and an unmixing network.
The weights of the initialization network were used as the initial weights for the unmixing
network. The initialization network was a pixel-wise model. The number of input and output
nodes was equal to the number of wavelengths (six in their case), and the number of hidden
nodes was equal to the number of targets (three in their case, which were HbO2, ICG, and Hb).
The LF was the L1 norm of the difference between the input and the output. The unmixing
network had more channels and used the whole set of multi-spectral images as input. The
numerical phantom had three molecular targets (HbO2, ICG, and Hb). In terms of estimation
accuracy, the model was similar to linear unmixing, but it did not need prior knowledge about
the absorption spectra.

Eigenspectra multi-spectral optoacoustic tomography is a model to calculate light fluence in
deep tissue.175 Olefir et al.132 combined the eigenspectra concept and DL and named the new
method as DL-eMSOT. They used LSTM and CNN to calculate the weights of four spectral
bases for predicting the eigenfluence. The eigenfluence of every pixel was generated by inter-
polation and sO2 was calculated by linear unmixing. In the in vivo experiment, they inserted a
tube filled with porcine blood of known oxygenation (0% or 100%) into the animal. For most
cases, DL-eMSOToutperformed eMSOT. Furthermore, the calculation speed of DL-eMSOTwas
60 times faster.

For generating mask of trusted regions, Gröhl et al.127 presented a framework in which esti-
mation confidences were used to increase the quantification accuracy. They used a CNR map
corresponding to the initial pressure image and a U-Net network to create a joint mask. The input
of the network was multi-spectral PA images and the output was a relative error map of optical
absorption. It only selected the overlap regions between the two maps for evaluation to increase
the quantification accuracy. To prove that their method was effective, the authors applied it to
three different QPAI methods: naïve fluence correction (using a simple MC to calculate the light
fluence and simulated the initial pressure), fluence correction (using U-Net to calculate the light
fluence and the initial pressure), and direct absorption estimation (using U-Net to calculate the
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absorption coefficient directly). The results showed an accuracy increase of nearly 80% when
applying a 50% confidence threshold in the direct absorption estimation model, which also pro-
duced the best results among the three models. Luke et al. presented O-net, in which two U-Nets
shared the same input and were combined to estimate the vascular sO2 and segment the blood
vessels. The input of the network was dual-wavelengths PA data.128 In their results, sO2 was
estimated only in the blood vessels (as segmented by the ground-truth oxygen maps) when the
network was trained. The model exhibited certain immunity to noise and produced absolute
errors of 5.1% and 13.0% when the SNR was 25 and 5 dB, respectively. Bench et al. used two
simple U-Nets for the segmentation and sO2 estimation of 3D PA images.176 The network was
trained on a data set generated numerically using 3D vessel models acquired from CT scans of
human lung vessels. In the simulation, a skin model consisting of the epidermis, dermis, and
hypodermis layers with different optical properties was applied. They used the segmentation
results to generate a mask to calculate the mean sO2 and found the mean difference between
the ground truth and the output to be 0.3%, with a standard deviation of 6.3%.

4 Discussion

4.1 Network Architecture and LF

As discussed earlier, the information loss due to deficient signal detection has been a major
roadblock for the development of PAI.

According to the published results, we find that: (1) U-Net is almost a panacea that has been
applied in most of the tasks; (2) the application of DL in the traditional reconstruction frame-
works usually generates better results than other approaches; and (3) the better results are often
accompanied by increased network complexity, such as more branches,36,126 more connec-
tions,86,87 and more complex layers or blocks.107,149

Is there a more fundamental design principle? Can we design networks based on physics and
generate interpretable structures that correspond to the first-principal process? Since interpret-
ability is associated with the trustworthiness, expandability, and sustainable development of the
DL approaches, complementing the data-driven approaches with explainable ingredients or top-
down designs has been a major endeavor for current and future research.177

Supplementing the missing information is also one of the major aims of network design.
Combining DL with traditional reconstruction methods is a good choice, which has yielded good
results in all types of task.68,109,110,132 Among them, applying DL in iterative model-based meth-
ods to calculate the update or the regularization term has been the most successful, probably
because it can best leverage the prior information about the PA physics and the imaged object.
In addition, the iterative method is more robust than other models (including preprocessing
model, postprocessing model, and direct reconstruction model).112

People often use MSE as a common LF, but more items (such as SSIM, PSNR, and PC99,103)
can be added for various purposes such as better information extraction and faster convergence.
Notably, GAN is an emerging network103,107 whose LF contains a network that is being simul-
taneously trained. The GAN network has been shown to recover fine details better.

Real-time data processing and display are important for clinical applications, and currently
most PAI systems are based on personal computers or FPGAs. Limited by the available comput-
ing resources, people have to pay close attention to the computational complexity and the overall
size when designing the network. The exploratory works in the CV field, such as SqueezeNet,178

MobileNet,179 and ShuffleNet,180 may be inspiring for the development of future DL-assisted
PAI systems with small size and high speed.

4.2 Data Set

The availability of high-quality data set is of paramount importance to the success of the DL
methods. A prominent example is the development of CNNs, which were made possible by
ImageNet.181 However, PAI is an emerging technology lacking high-quality data sets. The fol-
lowing remedies were used in the PAI community to alleviate the problem.
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• Using simulated data. It is a common method to build data sets, which is covered in
Sec. 2.2.2.

• Data augmentation. It can be used to generate more data from the existing data. Common
methods include random pixel shifting, rotation, cropping, warping, vertical and horizontal
flipping, and adding noise.70,72

• Transfer learning. It is a commonly used technique, in which the network is pretrained on
public/simulated data before being retrained on a more relevant, high-quality data set with
limited size.70,112

• Network downsizing. It can be used to reduce the input size. For example, when the input is
cropped from 256 × 256 to 64 × 64, the size of the data set is equivalently increased.100,101

In addition, it can reduce the number of network parameters so that the network can be
trained with fewer data.

• Unsupervised model. It is an alternative option where no ground truth is needed.130

Despite the above-mentioned solutions, large, high-quality PA data sets are bound to facili-
tate the development of DL-PAI. On the one hand, a high-quality data set makes network devel-
opment more efficient, reliable, and flexible. On the other hand, there is no effective way to
compare the performance of different models. This is to a large extent because the systems and
methods used by different research groups are vastly diverse, and intermural standards for the
imaging data and evaluation metrics do not exist. Most importantly, building a high-quality and
sizable database tailored for PAI is necessary. Fortunately, some organizations have begun build-
ing such data sets.63

Currently, building data sets and applying them in real-world applications remain challeng-
ing. Since DL models are unexplainable, one is unsure whether a model is solely dependent on
the physics of image formation, or it is also affected by specific image features. One must be
aware that once the network parameters are coupled with image features, it can hallucinate based
on what it has learnt, so one must confirm the result by comparing it with the ground truth.
Because the image features of PA are unique, it is difficult to obtain a gold standard image using
other modalities such as MRI, and without such ground-truth knowledge, how can we know that
the network is working properly? This is especially true for QPAI, since PAI is currently the only
imaging modality for sO2 and chromophore concentration measurement (with high spatial res-
olution in great depth). Thus due to the lack of a reliable QPAI computation method, it is cur-
rently impossible to obtain the ground truth in live animals or humans. Developing realistic
phantoms for PAI and QPAI is thus an important future research direction.

In real applications, data balancing is also noteworthy. This means that the training set dis-
tributions will affect the predicted results.182,183 It is a general rule of thumb that the proportion of
each data type is consistent with that in the actual application. If the condition is unsatisfied,
applying weight parameters is a useful method to balance the data.69

4.3 Reliability of Results

As we have briefly discussed in Sec. 4.2, in what condition, and to what extent can we trust an
image reconstructed by DL methods? For example, we have shown that DL can be used to
improve the image quality under limited-view detection. Since in the missing cone all informa-
tion is completely lost, what the NN does is to fill in the lost information as in super-resolution,
rather than to amplify weak frequency components as in deconvolution. Since a physical mecha-
nism for super-resolution is lacking (such as introducing non-linearity into the image formation
process), the true reason for the recovery of the missing frequency components may be that the
network recognizes the image features during training. This means that a network trained with
images acquired at the liver region would produce unrealistic features in the kidney by halluci-
nating. We expect that even for the imaging of the same organ (e.g., the breast), the network may
produce fake results if the target being imaged has features that are new to the network. The
situation will become worse when a network trained on one system is translated to another,
especially when the two systems have different types of probes and/or imaging targets. Thus
the study and verification of the generalizability of the DL networks are important.
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Tradition methods also perform well on promoting the PA image quality under non-ideal
detection.184,185 Generally speaking, they are currently more reliable than the DL methods.
Comparison between and integration of the traditional methods and the DL methods are impor-
tant future research directions.

4.4 Applications

Compared with the traditional modalities, such as CT, US, and MRI, PAI is an emerging imaging
modality, in which most clinicians do not have much experience. It is easier for doctors to accept
PAI if DL can be used to extract key image features or relevant physiological parameters for
auxiliary diagnosis.

For some clinical applications, information loss is inevitable. For hand-held probes, it is
difficult for common ultrasonic medical probes to receive wide-band PA signals (e.g., 0.1 to
10 MHz). Shallow features are prone to be affected by the sparse sampling, whereas the deep
features are more subject to limited view. In these situations, DL is an effective means to com-
pensate for the lost information. DL can also facilitate the development of low-cost and portable
equipment, which usually have reduced image quality. In such applications, building the data set
is comparatively easier and DL will play an important role. For example, one can get high-qual-
ity images using powerful lasers as the ground truth.

In addition to providing information about vascular morphology,186 a unique capability pro-
vided by PA is the imaging of chromophore concentrations and sO2 in tissue. Due to the lack of a
closed-form solution in these problems, data-based approaches (not limited to DL) have
achieved promising results.175 We expect DL to play an increasingly important role in QPAI.

Specific devices incorporating DL can achieve good imaging results unachievable
otherwise.115 It is believed that, combined with DL, novel PAI devices can be designed to meet
the needs of various applications. In particular, as 3D PAI is becoming increasingly popu-
lar,65,72,104,129 using DL for 3D reconstruction, generating 3D images from 2D data, or processing
3D images are important future directions.

4.5 Conclusion

Despite the above challenges and difficulties, we envision that DL will continue to make great
impact for PA imaging. The unparalleled capability of DL in information extraction, fusion, and
high-speed processing is bound to bring PAI new vigor and opportunities. This review is thus not
a conclusion, but rather the herald of the exciting era of DL-based PA imaging.
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