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Abstract

Significance: An accurate, automated, and unbiased cell counting procedure is needed for tissue
selection for corneal transplantation.

Aim: To improve accuracy and reduce bias in endothelial cell density (ECD) quantification by
combining Gabor-domain optical coherence microscopy (GDOCM) for three-dimensional, wide
field-of-view (1 mm2) corneal imaging and machine learning for automatic delineation of endo-
thelial cell boundaries.

Approach: Human corneas stored in viewing chambers were imaged over a wide field-of-view
with GDOCM without contacting the specimens. Numerical methods were applied to compen-
sate for the natural curvature of the cornea and produce an image of the flattened endothelium. A
convolutional neural network (CNN) was trained to automatically delineate the cell boundaries
using 180 manually annotated images from six corneas. Ten additional corneas were imaged
with GDOCM and compared with specular microscopy (SM) to determine performance of the
combined GDOCM and CNN to achieve automated endothelial counts relative to current pro-
cedural standards.

Results: Cells could be imaged over a larger area with GDOCM than SM, and more cells could
be delineated via automatic cell segmentation than via manual methods. ECD obtained from
automatic cell segmentation of GDOCM images yielded a correlation of 0.94 (p < 0.001) with
the manual segmentation on the same images, and correlation of 0.91 (p < 0.001) with the
corresponding manually counted SM results.

Conclusions: Automated endothelial cell counting on GDOCM images with large field of view
eliminates selection bias and reduces sampling error, which both affect the gold standard of
manual counting on SM images.
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1 Introduction

Endothelial cells show poor regenerative capacity in vivo and are critical for preserving corneal
transparency vis-a-vis their fluid pumping mechanism that maintains appropriate hydration sta-
tus and clarity of the stroma. We are limited in our ability to assess corneal endothelial function,
but evaluation of endothelial density is used as a marker for corneal endothelial health.1

Quantitative assessments of endothelial cell density (ECD) and morphology with specular
microscopy (SM) are performed at eye banks to evaluate donor tissue quality.2,3 To minimize
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the risk of corneal donor tissue contamination, SM is performed with the donor corneal tissue
immersed in a preserving medium (Optisol GS or Life 4°C) within its polymethyl methacrylate
(PMMA) storage and viewing chamber (Bausch + Lomb, Krolman, Stephens or Numedis). In
order to achieve good-to-excellent imaging quality, it is recommended to warm the tissue at room
temperature for at least 2 h for corneas stored in Optisol GS and at least 2.5 h for Life 4°C.4 Rapid
warming of tissue in an incubator was shown to be a safe alternative to room temperature
warming.5 SM, which has been used in eye banks since the 1980s, provides a magnified view
of the endothelial layer, over a field of view typically of 300 μm × 400 μm. Cell counting is
performed by manually selecting ∼50 to 100 cells in the field of view and using one of various
extrapolation methods (comparison method, frame method, corner method, and center to center
method).6 Since the cells are selected manually, the analysis can suffer from selection bias and
interoperator variability. The Cornea Donor Study Group evaluated 663 SM images and com-
pared the results obtained by individual eye banks and by the Cornea Reading Center; only 65%
of the images yielded a difference in cell count under 10%.7 Factors such as image quality, death
to preservation time, and presence of epithelial defects or of Descemet’s membrane folds, as well
as the choice of method used for extrapolating the ECD, all impact the variability in ECD
between eye banks.

ECD was adopted as a medical standard by the Eye Bank Association of America (EBAA)
in 2001. The EBAA guidelines do not provide a strict cutoff based on ECD for selection of
corneal tissue for transplant and leave the decision to the discretion of eye bank medical direc-
tors. Most eye banks indicate 2000 as the minimum ECD requirement for penetrating kerato-
plasty; however, surgeons commonly request and prefer higher ECDs (e.g., above 2300 to
2500 cells∕mm2).3 In addition, 6-month postoperative ECD can be an important metric to pre-
dict endothelial graft failure after penetrating keratoplasty.8

Several algorithms for the automatic segmentation of the endothelial cells, i.e., identification
of the individual cells, from images acquired with SM or confocal microscopy have been pro-
posed over the past three decades. Some of the early approaches, some of which were included in
commercial implementations,9–11 relied on thresholding cell edges and on morphological analy-
sis of the shape of the cells after noise filtering and contrast enhancement.12–14 These methods
lack sufficient robustness to deal with images of varying quality, as they are prone to under- and
oversegmentation in regions with poor image quality. The authors did not provide any quanti-
tative measure of image quality. Another set of methods used image characteristics, such as
the hexagonality of the endothelial cells, as a filtering feature.15,16 While being more robust than
earlier approaches, the effectiveness of these methods is hampered by their inability to determine
an optimal threshold level for the images. Another set of methods rely on watershed
segmentation.17–20 However, this approach is generally susceptible to under- or oversegmenta-
tion, especially in areas with poor image contrast.

Machine learning approaches have also been proposed. Scarpa and Ruggeri developed a
genetic algorithm to fit pixel intensities with hexagonal meshes.21 More recently, neural net-
works have been applied successfully to automatically segment SM images. One advantage
of neural networks is that they do not require prespecified features. Fabijańska22 applied a con-
volutional neural network (CNN) based on the U-Net to a dataset of 30 SM manually annotated
images of good quality and achieved an area under the ROC curve of 0.92. Daniel et al.23 applied
the U-Net architecture to a dataset of 385 manually annotated SM images and demonstrated an
R2 from Pearson’s correlation between automated and manually annotated cell counting of 0.96,
while a traditional approach using grayscale morphology and water shedding correlated with the
ground truth with R2 as low as 0.35. Joseph et al. also use U-net in their proposed end-to-end
system for semiautomatic cell segmentation of SM endothelial images. The proposed processing
pipeline includes image flattening, U-net deep learning, and user-assisted postprocessing. The
system shows human-comparable performance, i.e., 92% of cells from the test set were scored as
acceptably segmented by a human evaluator, with a full annotation being able to be completed in
under 5 min per image.24 Auksorius et al.25 also recently proposed a similar pipeline for volu-
metric images obtained with Fourier-domain full-field optical coherence tomography (OCT).
The proposed pipeline used a modified U-Net neural network for the segmentation, trained with
two OCT images and four SM images.
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Gabor-domain optical coherence microscopy (GDOCM) is a high lateral resolution variant of
Fourier-domain OCT.26,27 GDOCM incorporates concepts of OCT (imaging depth of 2 to 3 mm)
and confocal microscopy (micron-scale lateral resolution). GDOCM breaks the depth-invariant
cellular resolution limit of OCT by incorporating a liquid lens in a custom microscope with 0.18
numerical aperture (corresponding to a lateral resolution of 2 μm), which is used to dynamically
refocus the beam at different depths.28 A microelectromechanical systems (MEMS) mirror is
used to steer the beam over a field of view of 1 mm × 1 mm.29 Multiple volumetric images are
acquired and fused together. GDOCM was previously used with contact imaging modality to
produce 3D images of corneal tissue with isotropic resolution of 2 μm.30–34 Manual counting of
endothelial cells from 180 GDOCM images (six repeated images at five different locations on six
corneas) yielded repeatability under 2.3% for six repeated images at each location.32

The capability to image the cornea in 3D over its full thickness with micrometer-scale res-
olution allows for accurate measurement of thickness35 and evaluation of stromal opacities.36

This can be applied to investigating corneas affected by microbes (acanthamoeba and fungal
elements),37 corneal nerves,34 corneal dystrophies (epithelial, stromal, and endothelial),31 scars,
incisions, and Descemet’s membrane detachments. In eye banking, it can be useful for pre- and
postprocessing comparisons.38 In addition to the 3D imaging capability with cellular resolution,
GDOCM has the major advantage of a large field of view of 1 × 1 mm2, which is 4 to 10 times
larger than the capability of commercial SM commonly used at eye banks, as illustrated in
Table 1.

In this paper, we report on the first demonstration of noncontact GDOCM to noninvasively
image corneal tissue stored in viewing chambers, and on the development of numerical methods
to digitally flatten the endothelium and extract quantitative assessment of ECD from GDOCM
images of corneal tissue. The proposed methods are validated against the gold standard of
manual cell counting from SM images.

2 Methods

2.1 Noncontact, 3D Large Field-of-View Corneal Imaging with
Gabor-Domain Optical Coherence Microscopy

GDOCM was first developed for contact imaging, which is preferred in applications that benefit
from index-matching between the microscope and the sample, such as dermatology.27,39,40 The
contact imaging modality, however, is not desirable for corneal imaging, since physical contact
may cause damage to the tissue, and requires exposing the tissue to the outside environment. The
GDOCM microscope was recently redesigned to support two imaging modalities: contact and
noncontact with 15-mm working distance. The GDOCM system shown in Fig. 1(a) can be used
to image corneal tissue stored in viewing chambers using a noncontact imaging modality, as
shown in Fig. 1(b). For corneal tissue imaging with both GDOCM and SM, the PMMAviewing
chamber causes losses in the signal acquired due to the specular reflection at the air/PMMA
interface, and due to the scattering and absorption inside the material; in the case of GDOCM,
high signal-to-noise ratio images of the corneal tissue can still be achieved due to the capability
to dynamically focus the beam on the tissue below the lid of the container.

Table 1 Comparison of commercial SM for eye bank corneal endothelium analysis and the
GDOCM instrument.

Company HAI Laboratories Konan Topcon LighTopTech

Model EB-3000xyz CellChek Dþ SP-1P GDOCM 4D™

Technology SM SM SM GDOCM

Analysis
area

0.225 mm2

(450 μm × 500 μm)
0.12 mm2

(400 μm × 300 μm)
0.1375 mm2

(250 μm × 550 μm)
1 mm2

(1 mm × 1 mm)
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Data from six corneas previously imaged with GDOCM with contact modality (180 images
total) and manually counted32 were used to train the CNN for the automatic segmentation of
endothelial cells. Five locations on each of six corneas were imaged; six repeated imaged were
taken at the same location after repositioning the sample under the microscope, for a total of 180
images. The purpose of repeating the imaging at the same location after repositioning the sample
under the microscope was to augment the dataset while having a limited number of corneas
available, and to acquire multiple images affected by real imaging issues, such as noise and
other imaging artifacts potentially introduced by the operator when positioning the probe.

When introducing a new imaging modality, such as GDOCM, validation against the gold
standard (SM in this case) is necessary to demonstrate noninferiority of the new solution.
To assess the performance of the automated cell counting procedure, 10 donor corneas were
imaged with SM and with GDOCM in noncontact modality through a viewing chamber
(endothelium side up). Optisol GS (Bausch + Lomb, Rochester, New York) was used as the
storage medium. The GDOCM imaging configuration is shown in Fig. 1(b). The donor tissue
was warmed at room temperature for 2 h prior to imaging.

An example of the 3D high-definition, wide field-of-view imaging capability of GDOCM is
shown in Fig. 2.

The 3D corneal images acquired by GDOCM, such as SM images, are affected by the cur-
vature of the endothelium. As a consequence, it is not possible to visualize the endothelial cell
layer in a single en face image, as shown by Fig. 3.

Each GDOCM en face view is separated by ∼1.5 μm, which corresponds to the axial sec-
tioning capability of the system. The en face images shown in Figs. 3(a)–3(d) span a total depth
of 9 μm and are each separated by ∼3 μm; it can be seen that only a fraction of the total endo-
thelial cells is in focus and clearly visible in each image. The hyper-reflective endothelial cells
appear the brightest when they are in focus. In addition, cells at the center of the cornea are
brighter than at the periphery, since there is some loss of light at the periphery due to the natural
curvature of the cornea causing some of the backscattered light not to be collected by the micro-
scope. As such, the effective area considered in the analysis was 0.2 mm2, corresponding to the
central portion of the cornea with a diameter of 0.5 mm. It should be noted that this constitutes a
significant improvement (6 to 12×) in the number of cells counted over the current practice,
which consists of eye bank technicians manually counting only a total of 50 to 100 cells within
the 0.12 mm2 area imaged with SM. This improvement is due to two concurrent factors: (1) the
area of analysis is increased with GDOCM compared to the state-of-the art SM instruments, and
(2) with automated cell counting all cells in the area of analysis are assessed, while the manual
counting performed by eye bank technicians is done by assessing only 50 to 100 cells. With a
typical ECD of 3000 cells∕mm2, the number of cells present in a 0.2-mm2 area is 600, which is
6 to 12 times the number of cells manually assessed (50 to 100).

Fig. 1 (a) GDOCM system and (b) GDOCM microscope operating at 15-mm working distance to
image corneal tissue through a viewing chamber. There is an air gap between the microscope and
the viewing chamber.
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Fig. 3 En face views at the transition between stroma and endothelium. (a)–(d) Separated in depth
by 3 μm each. Bars: 100 μm. The hyper-reflective endothelial cells appear brightest when in focus.

Fig. 2 GDOCM images of an ex vivo human cornea (field of view 1 mm2) imaged through the
viewing chamber. (a) 3D view. (b) Full-depth cross-sectional image showing the corneal layers:
EP, epithelium; BL, Bowman’s layer; ST, stroma; DM, Descemet’s membrane; EN, endothelium.
(c) En face view of the epithelium. En face images of the (d) middle and (e) posterior stroma reveal
stromal keratocytes (white arrows). (f) En face view of the transition between stroma and endo-
thelium, with endothelial cells visible. The bars are 100 μm.
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2.2 Automatic Segmentation and Numerical Flattening of the Endothelium

Numerical methods can be implemented to digitally flatten the endothelium in a 3D GDOCM
image. Previous flattening attempts of GDOCM images consisted of detecting the peak in each
A-scan (1D depth profile) and repeating this step to the entire volumetric image to extract
the endothelial surface; after polynomial fitting, the pixels of the 3D image were shifted
to produce a flattened view of the endothelium.31,32 The drawback of this approach is that
artifacts are often present in the flattened image due to the 1D approach of this method.
Here, we propose the 3D approach illustrated in Fig. 4, which consists of the following steps.
Step 1: Gaussian blur for noise reduction. Gaussian blur, a form of low-pass filter, is a standard
noise reduction technique used in image processing to reduce the sharpness images, thus
reducing noise artifacts from the acquired image. Step 2: Segmentation of the cornea using
Huang binarization.41 Ideally, the acquired volume should be bimodal, i.e., have bright voxels
over the entire cornea and dark voxels elsewhere. In practice, the volume is still noisy, even after
denoising. The Huang binarization attempts to find the optimal binarization threshold by
minimizing the fuzziness of the image. Step 3: Median filtering to reduce binarization artifacts.
Binarization can increase the noise in the image, especially the so-called salt-and-pepper noise.
Median filtering is a well-established image processing technique to reduce this type of noise.42

Step 4: Identification of the endothelial surface with RANSAC fitting.43 Step 5: Max-
intensity projection of a slice below the fitted surface to account for estimation errors in steps
2 and 3. The outcome of the 3D flattening approach is an artifact-free en face view of the
endothelium.

Fig. 4 Automated segmentation of the endothelium from a GDOCM image shown here in a 2D
cross-section. (a) Original image. (b) After Gaussian blur (step 1). (c) After Huang binarization
(step 2). (d) After median filtering (step 3). (e), (f) Segmented endothelial surface in green (e) before
and (f) after RANSAC fitting (step 4). The bars are 100 μm.
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2.3 Automated Cell Segmentation and Counting with Machine Learning

A dataset with 180 GDOCM images (obtained from imaging six corneas at five locations each),
and the corresponding manual tracing of the endothelial cells over the central 0.5-mm diameter
of the flattened endothelium was used for training and testing a CNN–VGG-16 (see Fig. 5).44

We applied a transfer learning approach using the pretrained VGG-16 network. The network is
pretrained on more than a million images from the ImageNet database. The pretrained model has
already learned to extract features from different image categories and can improve the classi-
fication results even with small training datasets. Data augmentation was also used by applying
randomly distributed translations of �10 pixels in both directions, specular reflections and rota-
tions. Scaling and skewing were not applied to preserve the morphology and the sizes of the
cells. We trained the CNN six times using a leave-one-out cross-validation strategy.45 The train-
ing was done on five manually traced corneas (150 images) and tested on the sixth cornea
(30 images); this procedure was repeated six times, leaving out a different cornea for testing
each time.

Each pixel of the images in the dataset was annotated as belonging to one out of three classes:
cell border, cell interior, and noise. For the training, we used stochastic gradient descent with a
momentum of 0.9, an initial learning rate of 1e-3, an L2 regularization of 5e-4, a minibatch size
of 16 images, and a maximum of 400 epochs.

To obtain the segmentation of the cells in the testing step, the raw classification results from
the trained network were postprocessed as follows: a binary mask was extracted from the pixels
classified as cell border. A two-pixel dilation, to close small gaps in the borders, followed by
skeletonization, was applied to the binary mask. Regions smaller than 100 square pixels or larger
than 750 square pixels were excluded from the segmentation as representing oversegmentation
or noisy areas; the chosen interval included 95% of the cells in the ground truth. An example of
the fully automated procedure for ECD analysis from the en face view of the flattened endo-
thelium is shown in Fig. 6. The analysis was performed on the central cornea with 0.5-mm
diameter to match the manually annotated data available.

Fig. 5 VGG-16 architecture44 used for automated endothelial cell segmentation. VGG-16 is a type
of CNN. CNNs, also called shift invariant artificial neural networks, are a type of artificial neural
network` specially designed for image processing and modeled after the visual cortex of animals.
The convolutional layers (denoted by the prefix Conv in the figure) mimic the functions of visual
receptors, while the pooling layers filter the most salient activations from the lower layers. Dense
layers are regular fully connected multilayer perceptrons, used for classification.

Fig. 6 Automated cell counting procedure. (a) After automatic segmentation of the endothelium
and numerical flattening, (b) the region with 0.5-mm diameter in the center of the cornea is
selected for analysis and cropped, to match the manually annotated data available. (c) The CNN
provides automatic segmentation from the image. (d) After skeletonization of the segmented
borders, (e) the cell areas can be quantified.
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2.4 Comparison with Specular Microscopy

For comparison with the gold standard of SM, 10 corneas were analyzed at the eye bank using a
Konan CellChek D+ SM with the standard evaluation process, in which a technician manually
selects 50 to 100 cells and the ECD is obtained via a center/flex center method. The imaging with
GDOCM was conducted on the corneas stored in the same viewing chambers as for SM evalu-
ation, and on the same central area of the cornea. After numerical flattening of the endothelium,
a CNN was used to automatically obtain the ECD.

3 Results

3.1 Endothelium Segmentation and Flattening

The automated 3D endothelium segmentation and flattening procedure was applied to 3D
GDOCM images to produce en face views of the endothelium. A comparison with the 1D
approach is shown in Fig. 7.

While the 1D approach can result in artifacts [as shown in Fig. 7(a)] due to mismatch between
adjacent points, the 3D approach results in an artifact-free en face view of the endothelium [see
Fig. 7(b)]. The flattened endothelia for the 10 corneas imaged with noncontact imaging modality
through the viewing chambers are shown in Fig. 8.

The darker periphery in the images is caused by the lower scattering signal being collected
from regions where the tissue is less normal to the microscope than the center of the cornea.

3.2 Automated Cell Segmentation

The manually annotated dataset available consisted of 180 images from six corneal samples
imaged with GDOCM.32 The CNN was trained using manually traced images from five corneal
samples, for a total of 150 images (six repeated images at five different locations on each cornea).
Postprocessing of the identified borders yielded the cell segmentation. The performance of the
CNN was tested on 30 images from the remaining cornea (six repeated images at five different
locations). This procedure was repeated six times in a leave-one-out cross-validation strategy.
An example of the results obtained is shown in Fig. 9 overlaid with the manual annotation.

An average of 316 cells per image was counted from the GDOCM images with the automated
procedure, compared to 307 with the manual procedure. The comparison between manual and
automated cell counting on cell density values for the corneas used for assessing the CNN per-
formance is shown in Fig. 10. Only cells identified by both methods have been included in this
analysis. We chose to only include cells found by both methods, because in reviewing the ground
truth we noticed that several instances of cells found by the CNN that had incorrectly not been

Fig. 7 En face view of the flattened endothelium. (a) A 1D approach introduces artifacts that
appear as lines creating discontinuities in the image, while the proposed 3D approach results
in (b) artifact-free flattening.
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annotated in the manual analysis. On average, the CNN found 12% more cells than what was in
the manual annotation.

The average difference in ECD between the two modalities was 0.3%, and their Pearson
correlation had an R2 of 0.94 (p < 0.001), as shown in Fig. 11(a).

The difference in mean ECD between the two automated and manual cell count was
22 cells∕mm2, and Bland–Altman analysis revealed that 95% of the differences in ECD were
within �185 cells∕mm2 of the mean difference, as shown in Fig. 11(b). The Bland Altman 95%
confidence interval includes zero.

In some cases, the automated procedure resulted in undersegmentation (see Fig. 12), thus
causing lower ECD results.

Fig. 9 Cell counting results over a region at the center of the cornea with 0.5-mm diameter. The
cells colored in white were found by both manual and automated procedures; the cells in teal were
found only by the automated procedure; and the cells in red were only found by the manual pro-
cedure. In some cases, the automated procedure identified ∼30% more cells than the manual
annotation.

Fig. 8 Flattened endothelium for 10 corneas imaged with GDOCM using the noncontact imaging
configuration of Fig. 1(b). Dark bands caused by folding of the tissue are visible in a few images.
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The average Dice score46 was 0.66 when computed on all cells, and 0.77 when computed
only on ground truth cells (thus excluding false positives due to incomplete ground truth).

3.3 Comparison with Specular Microscopy

To assess the GDOCM automatic cell counting relative to SM, 10 additional corneas were
imaged for which we had a complete report from the eye bank, including ECD assessed on
a Konan CellChek Dþ SM. The tissue data are summarized in Table 2. The time between death
and tissue preservation was on average 11.1 h (range: 4.5 to 18.6). The GDOCM imaging took
place an average of 5.6 days after the SM imaging (range: 2.1 to 7.2).

Fig. 11 (a) Comparison of manual and automated ECD estimation from GDOCM images for six
corneas (C1 to C6), each imaged at five locations with six repetitions (30 images per cornea).
(b) Bland–Altman plot showing show the difference between ECD measurements by the auto-
mated and manual methods plotted against the mean ECD.

Fig. 10 Comparison of cell counting results for manual (black line) and automated (blue line)
procedures on six corneas (cornea 1 to cornea 6) imaged at five locations each (L1-L5), with six
repeated images at each location (total 180 images). The automated cell counting results were
obtained with a leave-one-out cross validation. Error bars indicate the standard deviation for the
six repeated measurements at each location.
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The GDOCM automated cell count results were conducted on the central 0.5 mm of each
image. The results are shown in Fig. 13.

The automated cell count results were manually corrected for the cases in which two or more
cells were combined in one. An average of 180 cells were counted from the GDOCM images
with the automated procedure. The regions imaged with the two modalities were near the center
of the cornea but not identical. Also, it should be noted that the SM results likely suffer from
selection bias (i.e., the operator only selects a subset of 50 to 100 cells within the field of view).
These factors can account for differences in the counts. The results are shown in Table 3 and
Fig. 14.

The average difference in ECD between the two modalities was 3.7%, and their Pearson
correlation had an R2 of 0.91 (p < 0.001), as shown in Fig. 15(a).

The difference in mean ECD between the two modalities was 99 cells∕mm2, and Bland–
Altman analysis revealed that 95% of the differences in ECD were within �268 cells∕mm2

of the mean difference, as shown in Fig. 15(b). The Bland–Altman 95% confidence interval
includes zero.

Fig. 12 Example of undersegmentation with the automated cell counting method. (a) GDOCM
image of the endothelial cells. (b) Manual annotation of the cell borders. (c) Outcome of the
CNN, with two cells incorrectly identified as a single cell. (d) Overlay of (a)–(c).

Table 2 Donor age, time between death and cooling, time between death and preservation, time
between preservation and SM imaging, and time between SM imaging and GDOCM imaging for
10 corneas imaged in this study.

Cornea # Age

Time between
death and
cooling (h)

Time between
death and

preservation (h)

Time between
preservation and
SM imaging (h)

Time between
SM and GDOCM

imaging (h)

1 69 1.3 8.4 9.9 144.5

2 69 1.3 8.3 9.8 167.6

3 69 2.9 18.6 20.3 168.6

4 69 2.9 18.5 20.5 166.7

5 57 1.4 10.3 12.9 173.5

6 57 1.4 10.2 13.0 172.7

7 62 6.5 13.7 9.6 124.3

8 62 6.5 13.8 9.4 124.5

9 66 2.5 4.6 56.7 51.1

10 66 2.5 4.5 56.7 53.2

Average 2.9 11.1 21.9 134.7
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Table 3 Cell counting from SM images (semiautomated with manual cell selection) and GDOCM
images (automated) for the ten corneas imaged in this study.

Cornea # SM ECD (cells∕mm2) GDOCM ECD (cells∕mm2) Percent difference in ECD (%)

1 2137 2151 0.7

2 2247 2272 1.1

3 2976 2865 −3.7

4 3021 3171 5.0

5 2747 2971 8.2

6 2717 3053 12.4

7 2732 2977 9.0

8 2809 2835 0.9

9 2849 2844 −0.2

10 2809 2901 3.3

Fig. 13 Comparison of (left) SM images, (middle) GDOCM central 0.5-mm diameter images, and
(right) automatic segmentation for the 10 corneas of Table 2. Images have the same scale.
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The entire pipeline for automated cell counting from GDOCM images, segmentation, post-
processing, and counting, takes an average of 2 s per cornea on a common laptop (a MacBook
Pro with a 3.1 GHz Intel Core i7 processor and 8 GB of memory). The memory footprint of
the trained network is about 122 MB. By comparison, a trained technician takes on average
20 to 30 min to perform SM evaluation.

4 Discussion

For the first time, corneal tissue stored in viewing chambers was imaged with noncontact modal-
ity using GDOCM, a 3D numerical flattening procedure was developed to produce an artifact-
free en face view of the endothelium, and machine learning was applied to GDOCM images to
automatically count endothelial cells.

The results presented in Fig. 10 show an excellent agreement with the manual annotation,
even with the small training set available for this study; no statistically significant difference in
mean ECD was found, as indicated by the fact that the 95% confidence interval of Fig. 11(b)
included zero. Image quality affected the segmentation of cornea 2, as can be seen from the

Fig. 15 (a) Comparison of semiautomated ECD estimation from SM images and automated ECD
estimation from GDOCM images for the 10 corneas of Table 2. (b) Bland–Altman plot showing
show the difference between ECD measurements by SM and GDOCM plotted against the mean
ECD.

Fig. 14 Comparison of semiautomated ECD estimation from SM images and automated ECD
estimation from GDOCM images for 10 corneas of Table 2.
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higher standard deviation in ECD (C2, L3 in Fig. 11). The accuracy of the segmentation can be
improved using a more powerful classification model, such as one based on U-Net,47 and a more
sophisticated postprocessing approach, such as morphology analysis.48

The combination of GDOCM imaging and CNN automated cell counting was shown to pro-
duce results that are not statistically significantly different from the current practice of semiau-
tomated counting from SM images, as indicated by the fact that the 95% confidence interval of
Fig. 15(b) included zero.

Figure 9 shows that the network can identify cells not identified by the manual annotator.
While this may suggest super-human performance (i.e., better than most humans at this task),
which is reported in several successful machine learning models,49–51 additional manual exami-
nation of those cells indicated the need for revisiting the ground truth to ensure a more accurate
annotation. This review of the ground truth should be performed blindly (i.e., without having
access to the automated cell count results) to avoid introducing bias during training.

Current practices are for eye bank technicians to manually select 50 to 100 cells within a
much larger analysis area of 0.12 mm2. The cells within that area but not included in the manual
selection do not contribute to the ECD estimation; thus, the effective field of view used by SM is
even smaller than the 0.12 mm2 analysis area. Additionally, manual selection of cells for ECD
estimation from SM images also suffers from selection bias (i.e., the operator usually selects the
cells that look the healthiest) and interoperator variability, with the consequence that results are
not reproducible between different eye banks.7 The proposed approach using GDOCM and
machine learning has the potential to count ∼1500 to 3000 cells in 1 mm2 (15 to 60× improve-
ment over the current practice, which consists of manually counting 50 to 100 cells) and elimi-
nate selection bias. Interoperator variability derives from the imaging component only, since the
automated cell counting produces the same result given the same image, and is expected to be
around 2%.32

In this preliminary study, the same corneal tissue was imaged with two modalities (SM and
GDOCM), in the same central region of the cornea, but the cell counting comparison could not
be performed on the exact same cells. For this reason, a paired t-test was not appropriate in this
case, since our purpose was to compare two methods (GDOCM and SM), and, while SM is
considered the gold standard, it does not constitute the absolute gold truth. The count from
SM is impacted by several factors, including the tissue conditions, SM image quality, and which
cells are selected by the operator. We believe that the variability in cell counts obtained with the
two methods is consistent with the natural variability of endothelial cells within the cornea, given
that the two methods imaged cells in the same region at the center of the cornea, but not the exact
same cells. Future validation will be conducted imaging the same cells with the two modalities
and extending the proposed CNN for automated counting of endothelial cells from SM images.
Sensitivity to image quality variations will also need to be assessed on a larger dataset; further,
methods to deal with images of reduced image quality can be implemented.24

For future work, we plan to improve the classification model by combining U-Net with the
generative adversarial networks approach.52 A sliding window approach can also increase the
performance of the classification without requiring a larger dataset.22 Postprocessing can be
improved by introducing morphological analysis to automatically detect undersegmented cells.

5 Conclusions

In this study, noncontact imaging of corneal tissue through the viewing chamber was demon-
strated with Gabor-domain optical coherence tomography (GDOCM) over a larger field-of-view
than SM. A 3D image processing algorithm was developed to segment the endothelium and
correct the corneal curvature, resulting in artifact-free images of the flattened endothelium.
The combination of GDOCM and machine learning offers unbiased estimation compared to
the current procedural standard of manual cell selection on SM images.

The proposed approach combining GDOCM imaging and machine learning has the potential
to increase accuracy and robustness of ECD estimation by counting all the cells visible in the
1-mm2 field of view, thereby eliminating selection bias, and to reduce interoperator variability to
∼2%. In the future, this could lead to more robust analysis of corneal tissue health prior to

Canavesi, Cogliati and Hindman: Unbiased corneal tissue analysis using Gabor-domain optical coherence. . .

Journal of Biomedical Optics 092902-14 September 2020 • Vol. 25(9)



transplantation, and, combined with in vivo imaging, assist clinicians in the assessment, and
treatment of corneal disease.

Disclosures

CC is cofounder and president of LighTopTech. AC is an employee of LighTopTech. HBH is
a consultant of LighTopTech.

Acknowledgments

The authors thank Changsik Yoon, Amanda Mietus, and Yue Qi (University of Rochester)
for providing the manually annotated data on six corneas. We thank the Sight Society of
Northeastern NY for providing the specular microscope analysis for the corneal tissues used
in this study. This work was supported by the National Institutes of Health under Grant
No. EY028827 and by the National Science Foundation under Grant No. IIP-1534701.

References

1. J. W. Kwon et al., “Analyses of factors affecting endothelial cell density in an eye bank
corneal donor database,” Cornea 35(9), 1206–1210 (2016).

2. K. E. Gray et al., “Introduction: current and new technologies in corneal donor tissue
evaluation comparative image atlas,” Cornea 37, S1–S4 (2018).

3. B. A. Benetz and J. H. Lass, “Specular microscopy,” Cornea 37, S7–S8 (2018).
4. P. Chau et al., “Donor endothelial specular image quality in Optisol GS and Life 4°C,”

Int. J. Eye Bank. 1(2) (2013).
5. K. D. Tran et al., “Rapid warming of donor corneas is safe and improves specular image

quality,” Cornea 36(5), 581–587 (2017).
6. B. E. McCarey, H. F. Edelhauser, and M. J. Lynn, “Review of corneal endothelial specular

microscopy for FDA clinical trials of refractive procedures, surgical devices, and new intra-
ocular drugs and solutions,” Cornea 27(1), 1–16 (2008).

7. J. H. Lass et al., “An evaluation of image quality and accuracy of eye bank measurement
of donor cornea endothelial cell density in the specular microscopy ancillary study,”
Ophthalmology 112(3), 431–440 (2005).

8. J. H. Lass et al., “Endothelial cell density to predict endothelial graft failure after penetrating
keratoplasty,” Arch. Ophthalmol. 128(1), 63–69 (2010).

9. M. O. Price, K. M. Fairchild, and F. W. Price, “Comparison of manual and automated endo-
thelial cell density analysis in normal eyes and DSEK eyes,” Cornea 32(5), 567–573 (2013).

10. J. Huang et al., “Comparison of manual and automated analysis methods for corneal endo-
thelial cell density measurements by specular microscopy,” J. Optom. 11(3), 182–191
(2018).

11. S. Maruoka et al., “Comparison of semi-automated center-dot and fully automated endo-
thelial cell analyses from specular microscopy images,” Int. Ophthalmol. 38(6), 2495–2507
(2018).

12. R. Nadachi and K. Nunokawa, “Automated corneal endothelial cell analysis,” in Proc. IEEE
Symp. Comput.-Based Med. Syst., IEEE, pp. 450–457 (1992).

13. F. J. Sanchez-Marin, “Automatic segmentation of contours of corneal cells,” Comput. Biol.
Med. 29(4), 243–258 (1999).

14. S. Jonuscheit, M. J. Doughty, and K. Ramaesh, “In vivo confocal microscopy of the corneal
endothelium: comparison of three morphometry methods after corneal transplantation,”
Eye 25(9), 1130–1137 (2011).

15. K. Habrat et al., “Cell detection in corneal endothelial images using directional filters,” in
Adv. Intell. Syst. Comput., Vol. 389, pp. 113–123 (2016).

16. M. R. Mazhoun et al., “Detection and complement of hexagonal borders in corneal endo-
thelial cell image,” Med. Imaging Technol. 14(1), 56–69 (1996).

Canavesi, Cogliati and Hindman: Unbiased corneal tissue analysis using Gabor-domain optical coherence. . .

Journal of Biomedical Optics 092902-15 September 2020 • Vol. 25(9)

https://doi.org/10.1097/ICO.0000000000000921
https://doi.org/10.1097/ICO.0000000000001609
https://doi.org/10.1097/ICO.0000000000001642
https://doi.org/10.7706/ijeb.v1i2.52
https://doi.org/10.1097/ICO.0000000000001166
https://doi.org/10.1097/ICO.0b013e31815892da
https://doi.org/10.1016/j.ophtha.2004.10.045
https://doi.org/10.1001/archophthalmol.2010.128.63
https://doi.org/10.1097/ICO.0b013e31825de8fa
https://doi.org/10.1016/j.optom.2017.06.001
https://doi.org/10.1007/s10792-017-0760-7
https://doi.org/10.1109/CBMS.1992.245000
https://doi.org/10.1109/CBMS.1992.245000
https://doi.org/10.1016/S0010-4825(99)00010-4
https://doi.org/10.1016/S0010-4825(99)00010-4
https://doi.org/10.1038/eye.2011.121
https://doi.org/10.11409/mit.14.56


17. L. M. Vincent and B. R. Masters, “Morphological image processing and network analysis of
cornea endothelial cell images,” Proc. SPIE 1769, 212–226 (1992).

18. Y. Gavet and J. C. Pinoli, “Comparison and supervised learning of segmentation methods
dedicated to specular microscope images of corneal endothelium,” Int. J. Biomed. Imaging
2014, 1–13 (2014).

19. B. Selig et al., “Fully automatic evaluation of the corneal endothelium from in vivo confocal
microscopy,” BMC Med. Imaging 15(1), 13 (2015).

20. S. Al-Fahdawi et al., “A fully automated cell segmentation and morphometric parameter
system for quantifying corneal endothelial cell morphology,” Comput. Methods
Programs Biomed. 160, 11–23 (2018).

21. F. Scarpa and A. Ruggeri, “Development of a reliable automated algorithm for the morpho-
metric analysis of human corneal endothelium,” Cornea 35(9), 1222–1228 (2016).

22. A. Fabijańska, “Segmentation of corneal endothelium images using a U-Net-based convolu-
tional neural network,” Artif. Intell. Med. 88, 1–13 (2018).

23. M. C. Daniel et al., “Automated segmentation of the corneal endothelium in a large set of
‘real-world’ specular microscopy images using the U-Net architecture,” Sci. Rep. 9(1), 4752
(2019).

24. N. Joseph et al., “Quantitative and qualitative evaluation of deep learning automatic seg-
mentations of corneal endothelial cell images of reduced image quality obtained following
cornea transplant,” J. Med. Imaging 7(1), 014503 (2020).

25. E. Auksorius et al., “In vivo imaging of the human cornea with high-speed and high-
resolution Fourier-domain full-field optical coherence tomography,” Biomed. Opt. Express
11(5), 2849–2865 (2020).

26. J. P. Rolland et al., “Gabor-based fusion technique for optical coherence microscopy,”
Opt. Express 18(4), 3632–3642 (2010).

27. J. P. Rolland et al., “Gabor domain optical coherence microscopy,” Proc. SPIE 7139,
71390F (2008).

28. S. Murali et al., “Assessment of a liquid lens enabled in vivo optical coherence microscope,”
Appl. Opt. 49(16), D145–D156 (2010).

29. A. Cogliati et al., “MEMS-based handheld scanning probe with pre-shaped input signals for
distortion-free images in Gabor-domain optical coherence microscopy,” Opt. Express
24(12), 13365–13374 (2016).

30. P. Tankam et al., “Assessing microstructures of the cornea with Gabor-domain optical
coherence microscopy: pathway for corneal physiology and diseases,” Opt. Lett. 40(6),
1113–1116 (2015).

31. P. Tankam et al., “Capabilities of Gabor-domain optical coherence microscopy for the
assessment of corneal disease,” J. Biomed. Opt. 24(2), 046002 (2019).

32. C. Yoon et al., “Quantitative assessment of human donor corneal endothelium with Gabor
domain optical coherence microscopy,” J. Biomed. Opt. 24(8), 085001 (2019).

33. C. Canavesi et al., “3D cellular imaging of the cornea with Gabor-domain optical coherence
microscopy,” Proc. SPIE 10867, 108670F (2019).

34. C. Canavesi et al., “In vivo imaging of corneal nerves and cellular structures in mice with
Gabor-domain optical coherence microscopy,” Biomed. Opt. Express 11(2), 711–724
(2020).

35. M. Ayala and R. Strandås, “Accuracy of optical coherence tomography (OCT) in pachy-
metry for glaucoma patients,” BMC Ophthalmol. 15(1), 124 (2015).

36. M. R. Bald et al., “Use of Fourier-domain optical coherence tomography to evaluate anterior
stromal opacities in donor corneas,” J. Ophthalmol. 2013, 1–5 (2013).

37. J. Lorenzo-Morales, N. A. Khan, and J. Walochnik, “An update on acanthamoeba keratitis:
diagnosis, pathogenesis and treatment,” Parasite 22, 10 (2015).

38. G. E. Boynton and M. A. Woodward, “Eye-bank preparation of endothelial tissue,” Curr.
Opin. Ophthalmol. 25(4), 319–324 (2014).

39. S. Murali, K. P. Thompson, and J. P. Rolland, “Three-dimensional adaptive microscopy
using embedded liquid lens,” Opt. Lett. 34(2), 145–147 (2009).

40. P. Tankam et al., “Gabor-domain optical coherence tomography to aid in Mohs resection of
basal cell carcinoma,” J. Am. Acad. Dermatol. 80(6), 1766–1769 (2019).

Canavesi, Cogliati and Hindman: Unbiased corneal tissue analysis using Gabor-domain optical coherence. . .

Journal of Biomedical Optics 092902-16 September 2020 • Vol. 25(9)

https://doi.org/10.1117/12.60644
https://doi.org/10.1155/2014/704791
https://doi.org/10.1186/s12880-015-0054-3
https://doi.org/10.1016/j.cmpb.2018.03.015
https://doi.org/10.1016/j.cmpb.2018.03.015
https://doi.org/10.1097/ICO.0000000000000908
https://doi.org/10.1016/j.artmed.2018.04.004
https://doi.org/10.1038/s41598-019-41034-2
https://doi.org/10.1117/1.JMI.7.1.014503
https://doi.org/10.1364/BOE.393801
https://doi.org/10.1364/OE.18.003632
https://doi.org/10.1117/12.816930
https://doi.org/10.1364/AO.49.00D145
https://doi.org/10.1364/OE.24.013365
https://doi.org/10.1364/OL.40.001113
https://doi.org/10.1117/1.JBO.24.4.046002
https://doi.org/10.1117/1.JBO.24.8.085001
https://doi.org/10.1117/12.2507868
https://doi.org/10.1364/BOE.379809
https://doi.org/10.1186/s12886-015-0116-x
https://doi.org/10.1155/2013/397680
https://doi.org/10.1051/parasite/2015010
https://doi.org/10.1097/ICU.0000000000000060
https://doi.org/10.1097/ICU.0000000000000060
https://doi.org/10.1364/OL.34.000145
https://doi.org/10.1016/j.jaad.2018.09.029


41. L.-K. Huang and M.-J. J. Wang, “Image thresholding by minimizing the measure of fuzzi-
ness,” Pattern Recognit. 28(1), 41–51 (1995).
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