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Abstract. Subglottic stenosis (SGS) is a challenging disease to diagnose in neonates. Long-range optical
coherence tomography (OCT) is an optical imaging modality that has been described to image the subglottis
in intubated neonates. A major challenge associated with OCT imaging is the lack of an automated method for
image analysis and micrometry of large volumes of data that are acquired with each airway scan (1 to 2 Gb). We
developed a tissue segmentation algorithm that identifies, measures, and conducts image analysis on tissue
layers within the mucosa and submucosa and compared these automated tissue measurements with manual
tracings. We noted small but statistically significant differences in thickness measurements of the mucosa and
submucosa layers in the larynx (p < 0.001), subglottis (p ¼ 0.015), and trachea (p ¼ 0.012). The automated
algorithm was also shown to be over 8 times faster than the manual approach. Moderate Pearson correlations
were found between different tissue texture parameters and the patient’s gestational age at birth, age in days,
duration of intubation, and differences with age (mean age 17 days). Automated OCT data analysis is necessary
in the diagnosis and monitoring of SGS, as it can provide vital information about the airway in real time and aid
clinicians in making management decisions for intubated neonates. © The Authors. Published by SPIE under a Creative
Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication,
including its DOI. [DOI: 10.1117/1.JBO.24.9.096001]
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1 Introduction
Subglottic stenosis (SGS) in the neonatal population poses
a significant diagnostic and management challenge. Injury to
the delicate subglottic epithelium in neonates can result from
a myriad of causative factors, including cyclical micromotion
of the ventilation circuit, bacterial infection, biofilm formation,
and direct interfacing of the endotracheal tube (ETT) with
the subglottic mucosa.1 Following acute mucosal inflammation,
edema and fibrosis can lead to SGS, which in some cases can
be progressive and life threatening. SGS has a contemporary
incidence between 0% and 2% per year in these patients,
with the mean total charge in discharges from hospitalization
being upward of $110,000.2–4 While direct laryngoscopy and
bronchoscopy remain the diagnostic gold standard for SGS,
this procedure requires general anesthesia and poses consider-
able risk of airway compromise.5 Hence, there exists a critical
need for a less invasive and practical means for neonatologists

and otolaryngologists to image the upper airway in intubated
neonates.

Optical coherence tomography (OCT) is a high-speed,
micrometer-resolution, cross-sectional diagnostic imaging
modality that has been previously described to characterize
changes in the subglottic mucosa following endotracheal intu-
bation in animals and humans.6–8 Long-range OCT (LR-OCT) is
an advanced adaptation of this technology, with an imaging
range up to 20 mm.9,10 A practical limitation of OCT imaging
is the massive volume of images recorded per airway scan
(amounts to 1 to 2 Gb). OCT image processing and objective
analysis can also be challenging and highly time-consuming,
precluding real-time assessment of the airway and clinical
decision-making.11,12 This limitation has also been observed in
intravascular OCT imaging, where each scan can generate up to
1000 individual images and requires hours of offline manual
analysis.13 If OCT were adopted in the neonatal intensive care
unit (NICU) for SGS, thousands of images per patient would
need to be analyzed, reconstructed, visualized, and then
reviewed by an expert. Like other diagnostic studies widely used
as screening measures, such as pap smears or complete blood
counts, OCT image analysis would require a large component
of automation for broad adoption in clinical medicine.14,15
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Texture analysis of tissue images is a viable and automated
process that has been previously utilized in tissue identification,
pathologic quantification, and cancer detection.16–18 Texture
properties represent tissue changes within an image and can
be evaluated via spatial distributions of pixel intensities.
Texture analysis can be investigated through gray-level occur-
rence matrices (GLCM) or by statistical analysis of texture
properties by examining the spatial distributions of pixels.17

In 2017, we described the dependence of two texture properties,
correlation and homogeneity, on intubation time in a rabbit
model of SGS.7 This was a first step in the long-term objective
of automating analysis of thousands of OCT images per patient
and optimizing airway management to avoid SGS in intubated
neonates.

In this study, we examined two key issues relevant to the
automated analysis of OCT images of the subglottis. First,
we evaluated software aimed at segmenting the subglottic air-
way wall into two distinct layers and directly compared these
results with manual segmentation. Second, to these segmented
regions, we applied basic texture matrix analysis to quantita-
tively define tissue characteristics and compared this data to
patient clinical parameters, such as gestational age (GA) or
duration of intubation.

2 Methods

2.1 Study Design

Analysis was conducted on data acquired from a previous study
of intubated neonates, which examined the use of OCT on the
neonatal laryngotracheal airway.19 Each neonate was imaged in
the NICU at either the University of California Irvine (UCI) or
Children’s Hospital of Orange County (CHOC). Clinical param-
eters including GA at birth and at time of imaging, total duration
of intubation, ETT size, and patient weight were all recorded for
each patient. Each subject’s family provided written informed
consent for participation, and imaging was performed following
the protocol approved by the Institutional Review Boards at UCI
and CHOC.

2.2 Optical Coherence Tomography System and
Imaging

Data sets for analysis were acquired through an LR-OCT system
that has been previously described.19,20 In brief, a 1310-nm
swept source laser with a repetition rate of 50 kHz
(Axsun Technologies, Massachusetts) was utilized as the light
source of the OCT engine, and an acousto-optic modulator
(Brimrose Corp., Massachusetts) was incorporated to generate
a career frequency of 150 MHz in the reference arm to achieve
a 20-mm working distance. Flexible, side-view endoscopic
OCT probes with an outer diameter of 0.7 mm and length of
65 to 70 cm were used for imaging the neonatal subglottis.
A sterilized, distally sealed sheath encasing the probe was
inserted into the subglottic region through the ETT in an intu-
bated patient. To acquire images, the probe was rotated at
25 revolutions-per-second and linearly retracted at a speed of
1.56 mm∕s. This continuous helical scanning scheme generated
300 to 600 360-deg images in total, with each image comprised
of 2000 axial scans (A-lines) and each A-line storing 2048
12-bit pixels. Images were compressed into 8-bit bitmap for
analysis.

2.3 Data Collection and Selection

Details of the methodology of OCT image acquisition have been
previously described.19 Spiral OCT scans through the larynx,
subglottis, and proximal trachea were obtained of each subject.
A total of 58 OCT data sets were obtained, based on data from
49 different patients. Nine patients who were intubated for
extended durations were serially imaged on different days.
Each data set was evaluated for image quality prior to segmen-
tation and texture analysis. Image quality was determined by
the extent to which background noise affected the automated
segmentation algorithm and the thickness measurements of
the upper airway (mucosa and submucosa layers) that were pro-
duced. If the speckle noise or ghost images could not be initially
cropped out of the OCT images or the noise significantly
impacted the process of edge detection so that the anatomical
structures of the image could not be accurately segmented
[Figs. 1(e)–1(f)], the data set was excluded from analysis.
Figures 1(a)–1(d) illustrate data with adequate image quality,
and Figs. 1(e)–1(f) demonstrate examples of discarded data with
image artifacts that precluded analysis. Many images had either
minimal background noise [Figs. 1(a)–1(b)] or noise that was
either filtered out of the image or did not significantly impact
the process of segmentation [Figs. 1(c)–1(d)]. If the tissue
contours of the mucosa and submucosa layers were faint or
distorted, the data set was also excluded from analysis. In both
circumstances, tissue segmentation by a human observer would
also not be feasible.

Seventeen out of the 58 OCT data sets were excluded due to
the aforementioned reasons. Out of the remaining 41 data sets,
select trachea (3), subglottis (2), and larynx (2) subsets of
data were discarded from within their respective data set for
the same reasons. In those cases, the remaining analyzable
images within the data set were included in the analysis.
Each data set was divided into three airway segments, larynx,
subglottis, and trachea, based on well-defined anatomic markers
(e.g., true vocal fold margin, tracheal or cricoid cartilage, and
laryngeal ventricles), which were identified in the OCT images.
OCT has previously been used in the recognition of tissue
structures.21,22

Both automated and manual segmentations were performed
by one trained study member (K.K.). Manual segmentation was
performed on most cross-sectional images in 28 out of the total
41 data sets, whereas automated segmentation and texture analy-
sis were performed on almost every one of the 41 data sets
(38 trachea, 39 subglottis, and 39 larynx data sets). A single
OCT data set ranged from 100 to 400 (mean 200) individual
images, depending on how distal the OCT probe was positioned
in the trachea at the beginning of the airway scan. The trachea
typically included a greater number of frames compared to
the larynx and subglottis, with a total count depending on how
distal the OCT probe was positioned in the trachea at the begin-
ning of the airway scan. Given the proportionally higher amount
of trachea data, approximately every fifth tracheal image was
segmented to achieve a proportionally sized data subset and
to conserve time; at least 20 trachea images were analyzed per
data set. In contrast, each and every image within the subglottis
and larynx subsets was segmented; on average, there were
approximately 40 data frames in each of these two airway
segments. Approximately 100 total images were manually and
autosegmented per data set. The amount of time required for
the program to segment each data set was also recorded.
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2.4 Manual Segmentation

In manual segmentation, tracing of the airway wall layers
was performed at user discretion with a computer mouse in
a program written in MATLAB with graphical user interface.
Anatomical OCT images of the airway are displayed in polar
coordinates [Fig. 2(a)], though representation in Cartesian form
facilitates better identification of key morphological features

during manual segmentation [Figs. 2(b) and 2(c)]. Layers of
airway wall microstructure (e.g., epithelium, submucosa, and
cartilage) were distinguished based on differences in grayscale
(pixel) intensity, as each tissue layer has its unique optical
composition.23 The first layer of the airway wall bordering the
ETT is the mucosa, which consists of epithelium, basement
membrane, and lamina propria. Underlying the mucosa is the
submucosa, which is followed by cartilage tissue, when present.
Two tissue interfaces were identified: the interface between the
airway lumen and the mucosal epithelium, and the interface
between the submucosa and cartilage. Both boundaries were
traced and the mucosa–submucosa boundary was delineated
by manual segmentation [Fig. 2(d)]. The layers identified
were the same as those identified by autosegmentation, as
described below.

2.5 Automated Segmentation

The automated segmentation algorithm that was developed for
imaging bovine airway OCT images following smoke inhalation
injury was adapted for use in this study.23 This graph theory-
based segmentation algorithm was used on successive OCT
images in each data set via a three-step process: a preprocessing
step, followed by an edge detection algorithm, and lastly a thick-
ness measurement heuristic (Fig. 3).

In the preprocessing step, the airway wall, including the
mucosa and submucosa, was distinguished from the background
(e.g., air, cartilage, ETT, OCT probe sheath, artifact, and noise).
This step also addressed problems posed by speckle noise
generated during imaging, ghost objects produced by internal
interference of the optics, and mirror image/objects induced by
Fourier transformation.24–26 These obstacles were compensated
for with a series of low-level procedures, such as speckle noise

Fig. 2 Stepwise process of manual segmentation. Raw OCT data in
(a) the polar coordinate and (b) Cartesian coordinate systems.
(c) Tracing of airway-epithelium interface and basement membrane.
ETT, endotracheal tube; BM, basement membrane; C, cartilage;
Epi, epithelium; S, OCT probe sheath; M, mucosa; SM, submucosa;
LP, lamina propria.

Fig. 1 (a), (c), (e) Axial LR-OCT images pre-segmentation and (b), (d), (f) post-autosegmentation.
Images (a) and (c) are representative of high-quality data that was segmented for (b), (d) airway wall
contours. Image (e) contained significant noise and artifact, (f) precluding segmentation.
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suppression, area filtering, dilation, or bridging. The different
thresholds that controlled each of these procedures had to be
manually set. Additionally, because the imaging probe was
protected by a plastic sheath, it was necessary for this sheath
to be identified and excluded from segmentation. Images were
manually cropped to further eliminate any possible artifacts
that could adversely affect the edge delineation step of the seg-
mentation algorithm. Following frame cropping and threshold
adjustment to suppress speckle noise, segmented grayscale
images with reliable airway structures for edge detection were
generated. These image stacks were subsequently rapidly ana-
lyzed by the program in real time on our computer workstation.

The edge detection step took previously generated localized
airway regions and performed the segmentation task using a
dynamic programming algorithm.23 The algorithm used graph
construction and recursive solution finding to obtain the optimal
path for the edge detection process.23 It treated every pixel in
the OCT image as a node in a graph to find the shortest path
(the edge) for the graph, based on the pixel intensity. The edge
was refined, or smoothed, by averaging neighboring pixels. The
airway lumen that was extracted was used as the first reference
edge (epithelial surface) and the outer boundary of the airway
wall, at the submucosa–cartilage junction represents the second
reference edge. The middle edge, or the boundary between the
mucosa and submucosa layers, was found by repeating this
process in the closed region between the epithelium and carti-
lage edges. The average thickness of the mucosa and submucosa

layers could then be determined after the mucosa and submu-
cosa layers were accurately delineated.

2.6 Texture Analysis

Each autosegmented image was evaluated using texture
analysis.7,27,28 This was done using the GLCM—a statistical
method of examining the spatial distributions of pixels. Four
different tissue texture properties (correlation, homogeneity,
contrast, and energy) were analyzed at four different angles
of the GLCM (0 deg, 45 deg, 90 deg, and 135 deg), resulting
in 16 unique texture variables for each image. Texture analysis
was performed on each frame in a data set in all 41 data sets.
Automatic and manual segmentation measurements were
compared using pairwise t-tests with significance level 0.05.
Associations between patient clinical parameters (e.g., GA at
birth and duration of intubation) and texture variables were
explored using Pearson correlations. As this was an exploratory
analysis, significance levels were not adjusted for multiple
comparisons.

3 Results
The automated and manual segmentation methods were found to
have very small but statistically significant differences in thick-
ness measurements. Sample sizes were 28, 27, and 23 data sets
for the trachea, subglottis, and larynx, respectively (Table 1).
Statistical analysis was performed after the segmentation of each
data set, and airway segmentation plateaued with statistical sig-
nificance around 28 data sets. Hence, manual segmentation was
performed on only 28 of the 41 total data sets. We noted that
the automated segmentation method tended to consistently
but minimally underestimate the mean airway wall thickness
(mucosa and submucosa) when compared to manual measure-
ments, measured in pixels. Manual segmentation of each image
stack (∼100 frames) required 30 to 40 min, depending on the
total number of images, and this time was noted. Automated
segmentation, compared to manual, was consistently faster
(p < 0.01) for analysis of the trachea (9 times faster), subglottis
(9 times faster), and larynx (6.7 times faster) (Fig. 4).

Analysis of the 16 different texture variables did not show
any statistically significant associations with thickness measures
but did demonstrate modest correlations with select patient
variables. In the subglottis, there were moderate correlations
between the contrast, energy, and homogeneity texture variables
and the age in days of the neonate (Table 2). In addition, in the
subglottis, the energy texture variables had a moderate correla-
tion with the patient’s GA at birth and the contrast texture

Table 1 Comparison between the airway wall thickness values (mea-
sured in pixels) obtained by automated and manual segmentations
(paired t -test).

Mean thickness P-value

Autosegmentation Manual segmentation

Trachea 38.013 38.852 0.012

Subglottis 44.793 46.657 0.015

Larynx 52.183 55.069 <0.001

Fig. 3 Simplified three-step schematic diagram of the automated
segmentation algorithm.
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variables had a moderate correlation with the number of days
the neonate was intubated (Table 2). Lastly, in the subglottis,
there were consistent differences by age when categorized as
below and above the median (≤17 days versus > 17 days) for
the energy and homogeneity texture variables. Although these
differences are consistent, due to the small sample size they
would not reach statistical significance when adjusted for multi-
ple comparisons (Table 3). Other clinical variables, including
race, gender, or weight, showed no correlations with the texture
variables.

4 Discussion
OCT is a high-resolution cross-sectional imaging modality that
is widely used in ophthalmologic, coronary vasculature, and
dermatologic imaging. 29–31 While OCT has been shown to reli-
ably measure and characterize airway wall morphometry, it has
limited practical applicability to airway monitoring due to the
vast amount of data acquired with each scan.32–35 We aimed
to address this need by constructing automated OCT data analy-
sis methods, with the goal to ultimately provide clinicians with
objective OCT data in a timely and practical manner.

4.1 Automated Segmentation

Unlike a manual approach, the autosegmentation code may erro-
neously classify noise in the OCT images as tissue structure,
as it does not remove all noise during the preprocessing step of
the algorithm. This occurs commonly with speckle noise at the
lateral margins of the image and if it is not addressed, can lead to
unreliable measurements during segmentation, resulting in an
overestimation of wall thickness. To compensate, images must
be analyzed with the selection of a specific and usually smaller
than normal window size to find regions of pixel density that
do not include speckle noise at the lateral margins of the image.
The criteria used here thus tend to minimally but consistently
underestimate the thickness of the mucosa and submucosa
layers of the upper airway of patient data sets. More importantly,
this minimal error comes with a critical gain in the consistency
of autosegmentation program, as evident by our findings illus-
trated in Table 1.

Due to the necessity of the image preprocessing steps,
the autosegmentation process was indeed semiautomated as
opposed to fully automated, as some level of screening had
to be performed. However, once the preprocessing steps were
completed, the image stack was rapidly analyzed. More impor-
tantly, this entire semiautomated process, which encompassed
the manual preprocessing and automated segmentation steps,
was still significantly faster than a purely manual approach.

There is great clinical value in the rapid detection and seg-
mentation of the upper airway wall. Edema can develop very
quickly in the airway wall, and the state of the mucosa can
change day by day. Therefore, clinicians need real-time data

Fig. 4 Timewise comparison of manual and automated segmenta-
tions.

Table 2 Comparison between texture variables and clinical param-
eters in subglottis (t -test).

Age in days GA at birth Days intubated

Texture variables
Correlation
(p-value)

Correlation
(p-value)

Correlation
(p-value)

Contrast (0D) 0.317 (0.049) −0.276 (0.089) 0.283 (0.081)

Contrast (45D) 0.316 (0.05) −0.285 (0.079) 0.282 (0.082)

Contrast (90D) 0.333 (0.039) −0.286 (0.077) 0.279 (0.085)

Contrast (135D) 0.316 (0.05) −0.285 (0.079) 0.282 (0.082)

Correlation (0D) 0.184 (0.262) −0.305 (0.059) 0.203 (0.215)

Correlation (45D) 0.181 (0.27) −0.28 (0.084) 0.207 (0.206)

Correlation (90D) 0.25 (0.125) −0.319 (0.048) 0.268 (0.099)

Correlation (135D) 0.178 (0.277) −0.28 (0.084) 0.203 (0.216)

Energy (0D) −0.347 (0.031) 0.33 (0.04) −0.318 (0.049)

Energy (45D) −0.344 (0.032) 0.332 (0.039) −0.315 (0.05)

Energy (90D) −0.347 (0.031) 0.332 (0.039) −0.315 (0.051)

Energy (135D) −0.344 (0.032) 0.332 (0.039) −0.315 (0.051)

Homogeneity (0D) −0.329 (0.041) 0.288 (0.075) −0.293 (0.07)

Homogeneity (45D) −0.328 (0.042) 0.297 (0.067) −0.293 (0.071)

Homogeneity (90D) −0.343 (0.032) 0.298 (0.065) −0.29 (0.074)

Homogeneity
(135D)

−0.328 (0.041) 0.296 (0.067) −0.293 (0.07)

Table 3 Comparison between texture variables and age of patient
(≤17 days versus > 17 days) in subglottis (t -test).

By Age (≤17 versus > 17)

Subglottis Unadjusted p-value

Energy (0D) 0.025

Homogeneity (0D) 0.038

Energy (45D) 0.028

Homogeneity (45D) 0.044

Energy (90D) 0.026

Homogeneity (90D) 0.037

Energy (135D) 0.028

Homogeneity (135D) 0.044
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to determine whether to, for example, extubate or perform a tra-
cheostomy on a patient, as other extubation readiness tests are of
low value, and this type of real-time data can be obtained much
more feasibly with an automated method of data analysis.36

Other studies have previously reported automated measurement
of images, including that of CT and MRI images.37–39 However,
OCT images have a much higher resolution and clarity com-
pared to CT and MRI images, and this combined with our seg-
mentation algorithm and texture analysis separates our image
analysis from other studies.

4.2 Texture Analysis

Texture properties serve as an objective proxy for microscopic
changes within native airway wall tissue.40,41 The optical proper-
ties of the airway wall differ between patients, presumably
because airway wall microanatomy changes with physiologic
states such as edema and fibrosis. Previous OCT studies
have described texture analysis for the purpose of tissue
classification.18,42–44 However, the correlation of texture proper-
ties with specific physiologic changes is not well understood.
Ajose-Popoola et al.7 described texture analysis following OCT
imaging of the rabbit subglottis following controlled brush
injuries, in which significant correlations were noted between
texture variables homogeneity and correlation with time from
injury. These animal studies provided the motivation for the
current analysis of in vivo human data sets.

We used Pearson correlations to identify associations
between the texture variables and clinical neonate variables,
such as GA at birth, intubation time, and ETT size. We noted
moderate correlations between subglottic texture properties and
GA at birth, age, and duration of intubation. Second, texture
analysis of the subglottis showed consistent differences with
age (median age of 17 days) at or near the significance level of
p < 0.05 before adjustment for multiple comparisons. Findings
here suggest that texture analysis of OCT images may poten-
tially be used to correlate physiologic changes in tissue compo-
sition with these specific patient metrics. For example, two
neonates with respective intubation durations of 3 days and
3 weeks may indeed have similar subglottic wall thicknesses.
However, the optical microstructure of their respective airway
walls can be characterized by texture properties, which may help
differentiate healthy tissue from edema in recently intubated
neonates and fibrosis following lengthy or repeated intubations.

4.3 Study Limitations

As all imaging was performed in vivo, direct comparison of
airway wall measurements and microanatomic composition with
tissue histology was not possible, as laryngeal biopsy is gener-
ally never indicated for SGS management and postmortem
evaluation of the neonate is not widely practiced as the emo-
tional burden for families is often insurmountable. However,
given prior animal OCT studies that demonstrate correlation
of OCT and histology, our study offers a means to attain objec-
tive, structural information on the human subglottic airway.45

Texture analysis is a simple feature extraction technique
that can be used as a reliable deterministic statistical process.
Although it has its limitations, as various factors can affect
the reliability, reproducibility, and robustness of texture features,
we were able to use this rudimentary feature classification
technology to show moderate correlations nearing significance
between clinical neonate variables and certain texture variables,

even with a small patient sample.46 While we obtained small
effect sizes with this small patient sample, this is an early result
that warrants further study. A larger sample size and future
improvements in the segmentation algorithms may lead to
stronger associations between clinical neonate variables and tex-
ture variables, resulting in a larger effect size. Although texture
analysis is a well-established albeit rudimentary pattern recogni-
tion approach, other pattern recognition and feature extractions
methods, such as fuzzy clustering, could also be also used to find
evidence of changes in tissue structure.47 Fuzzy clustering is a
process that sorts specific elements of tissue into different classes
so that elements in a class are similar to each other. It has already
been used to analyze nerve fibers in glaucoma patients as well as
to evaluate breast cancer nuclei as malign or benign and advance
breast cancer diagnosis.48,49 As OCT is a high data volume im-
aging modality with multispecialty applications, this under-
scores the critical need to develop automated techniques and
advanced pattern recognition approaches, possibly by incorpo-
rating machine learning, to analyze all this data.

4.4 Future Steps

Many of the issues that result in more of a semiautomated
approach are technical factors in the OCT system which make
the preprocessing step necessary, such as the speckle noise
and image artifacts that appear in the resulting OCT images.
Current research efforts at our institution have largely eliminated
these factors, and future OCT image analysis could potentially
eliminate all preprocessing steps and become a fully automated
process. We are also designing additional algorithms to auto-
matically both segment airway wall layers more efficiently and
analyze tissue composition, such as three-dimensional tissue
segmentation.50 This would simplify the process of recognizing
upper airway tissue morphology changes and dramatically
speed up diagnosis of upper airway diseases. We expect that our
work will be reproducible and of benefit to other OCT imaging
teams. With minimal in-person training, we foresee other medi-
cal centers being able to utilize our segmentation algorithms.
Moreover, we believe that with minimal alterations, if any, our
algorithm will be translated to measure other tissue types.

The integration of vertical-cavity surface-emitting lasers
(VCSEL) technology with OCT systems is a rapidly developing
arena, as these imaging systems feature vast improvements in
image quality with refined optics and probe design.51 VCSEL
OCT imaging is an active area of interest in our group, and
we aim to perform further imaging in intubated neonates and
gain improved quality image sets to better understand relation-
ships between OCT data and clinical parameters.

5 Conclusion
OCT is a high-resolution diagnostic imaging modality that has
tremendous potential as a means to objectively and serially ana-
lyze the airway in intubated neonates. The automated image
analysis algorithm described in this report offers an efficient and
precise solution to analyzing large-volume OCT data stacks.
With automated image analysis, OCT may ultimately offer
clinicians real-time information about the health of the intubated
neonatal airway and aid in airway management.
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