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Abstract. The visibility of retinal microvasculature in optical coherence tomography angiography (OCT-A)
images is negatively affected by the small dimension of the capillaries, pulsatile blood flow, and motion artifacts.
Serial acquisition and time-averaging of multiple OCT-A images can enhance the definition of the capillaries and
result in repeatable and consistent visualization. We demonstrate an automated method for registration and
averaging of serially acquired OCT-A images. Ten OCT-A volumes from six normal control subjects were
acquired using our prototype 1060-nm swept source OCT system. The volumes were divided into micro-
saccade-free en face angiogram strips, which were affine registered using scale-invariant feature transform
keypoints, followed by nonrigid registration by pixel-wise local neighborhood matching. The resulting averaged
images were presented of all the retinal layers combined, as well as in the superficial and deep plexus
layers separately. The contrast-to-noise ratio and signal-to-noise ratio of the angiograms with all retinal layers
(reported as average� standard deviation) increased from 0.52� 0.22 and 19.58� 4.04 dB for a single image
to 0.77� 0.25 and 25.05� 4.73 dB, respectively, for the serially acquired images after registration and aver-
aging. The improved visualization of the capillaries can enable robust quantification and study of minute changes
in retinal microvasculature. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0 Unported License. Distribution or

reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI. [DOI: 10.1117/1.JBO.22.3.036007]
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1 Introduction
Optical coherence tomography angiography (OCT-A) is an
emerging imaging modality with which the retinal circulation
can be visualized by computing the decorrelation signal on
a pixel-by-pixel basis. Variants of OCT-A methods have been
described in recent review articles.1–4 We have recently validated
the speckle variance approach to OCT-A against standard
invasive techniques, such as fluorescein angiography (FA),5,6

in which only the superficial capillaries can be distinguished
due to excessive choroidal fluorescence7 and ex vivo histological
analyses.6,8–10

The noninvasive, in vivo visualization of the retinal micro-
vasculature using OCT-A can be instrumental in studying
the onset and development of retinal vascular diseases. For
example, OCT-A has enabled the visualization of the deep
plexus layer and furthered the understanding of diseases, such
as paracentral acute middle maculopathy11–13 and diabetic
retinopathy.14,15 Quantitative measurements, such as capillary
density, can be used to stratify the risk of disease progression,
visual loss, and also for monitoring the course of disease.16,17

Due to projection artifact and poor contrast, it is often difficult
to trace individual vessels in this layer when only one en face
image is visualized. An additional challenge to this end is the
small dimension and pulsatile flow of the retinal capillaries,

making them less consistently visible and difficult to distinguish
from the speckle noise relative to larger vessels. This limits the
detection sensitivity for changes in the retinal microvascular
circulation due to diseases, aging, or treatment. Methods for
reliable visualization of the microvasculature in the OCT-A
images are required for studies conducting longitudinal and
cross-sectional quantitative analysis.

Our work focuses on improving the visible definition of reti-
nal microvasculature in OCT-A by motion correction, registra-
tion, and averaging of sequentially acquired images. Detailed,
high-quality OCT-A images are needed for clinical studies,
such as comparisons of OCT-Awith histology and fundus pho-
tography FA, and studying the shunting of vessels in a focal
area, such as the inner ring of vessels in the foveal avascular
zone (FAZ) or in glaucomatous focal defects.18

Serially acquiring and averaging multiple OCT-A images can
be an effective solution for confirming the presence or absence
of capillaries as the discontinuous appearance of the capillary
vessels is beyond improvement simply by just applying image
filtering.3,19 A crucial step in the serial acquisition approach
is the registration of multiple OCT-A images, the difficulty of
which is compounded by the fact that an OCT-A image is
acquired over multiple seconds and, thus, particularly susceptible
to motion artifacts. The registration of sequential B-scans20

can aid in attenuating small motion artifacts, but not the larger
motion artifacts associated with imaging subjects with pathol-
ogies. OCT-A with eye-tracking has been implemented in
commercial retinal imaging systems, although this increases*Address all correspondence to: Marinko V. Sarunic, E-mail: msarunic@sfu.ca
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hardware cost and complexity on which the sensitivity and
reliability of motion detection also depend. Previous works
on posthoc motion artifact removal by en face summed volume
projection have been reported in the literature, see for example
Refs. 3, 21, and 22. In the work by Hendargo et al.,21 two to
three sets of orthogonal (x- and y-fast) volumes were acquired
and divided into motion-free strips. The visualization and con-
trast of the vessels were improved by multiresolution Gabor fil-
tering, and the strips were registered one-by-one, first globally
by x- and y-translation that maximized the correlation in the
overlapping region and locally by B-spline free-form deforma-
tion in the overlapping region. Zang et al.22 did not acquire
orthogonal data sets, but instead serially acquired two OCT-
A volumes in the same scan orientation that were divided into
parallel motion-free strips. The strips were first registered by
x- and y-translation and rotation that minimized the squared dif-
ference of “large vessels,” which were defined in the paper as
pixels with decorrelation value greater than 1.3 times the mean
value. This was followed by B-spline free-form deformation on
“small vessels,” defined as pixels with decorrelation value less
than 1.3 times and greater than 0.6 times the mean value. Both
groups presented mosaicking of OCT-A images into wide-field
views, which has been reported in other works as well.19,23

In this work, we present averaging of up to 10 serially
acquired OCT-A images with parallel strip-wise microsaccadic
noise removal and localized nonrigid registration. Unlike the
previous two methods,21,22 which concentrated motion artifact
removal and wide-field imaging, our purpose was to improve
the contrast and signal to background of the capillaries in focal
regions. The details of our methodology are presented below.
In brief, the serially acquired OCT-A images were divided into
microsaccade-free strips. The target strips were first aligned to
a template image by x- and y-translation based on maximum
cross-correlation, followed by affine registration using scale-
invariant feature transform (SIFT),24 a feature extraction method
robust to scaling, orientation changes, illumination changes, and
affine distortions.

The image warping and local distortion due to slower eye
movements are less obvious and more difficult to model than
the strong stripe artifacts from microsaccadic motion. Instead
of free-form deformation,21,22 our approach optimized the inten-
sity value at each pixel location as the average of the values
from each overlapping strip determined by translation and
rotation of a windowed region in each strip. Thus pixel-wise
correspondence across multiple OCT-A images was found by
local neighborhood matching.

The remainder of this report is organized as follows.
Section 2 describes our processing algorithm for OCT-A
image averaging in detail, as well as quantitative metrics to
evaluate the improvements to the image quality. The algorithm
was tested on OCT-A images of six healthy volunteers, with the
vessel visibility improvement qualitatively demonstrated in all,
superficial, and deep plexus layers. Quantitatively, we evaluated
the algorithm performance by contrast-to-noise ratio (CNR) and
signal-to-noise ratio (SNR) with the background speckle noise
information from the FAZ. We end with a discussion of the
image quality improvements using our method of averaging
serially acquired OCT-A images.

2 Methods
All subject recruitment and imaging took place at the Eye Care
Centre of Vancouver General Hospital. The project protocol was

approved by the Research Ethics Boards at the University of
British Columbia, Simon Fraser University, and Vancouver
General Hospital, and performed in accordance with the tenets
of the Declaration of Helsinki. Written informed consent was
obtained from all subjects.

2.1 Optical Coherence Tomography Instrumentation

The OCT-A images were acquired from a graphics processing
unit-accelerated OCT clinical prototype; the details of the
acquisition system have previously been reported.5 The OCT
system used a 1060-nm swept source (Axsun Inc.) with
100 kHz A-scan rate and a 111-nm 10-dB tuning bandwidth;
the digitized spectrum used for imaging corresponded to an
axial resolution of ∼6 μm in tissue. The size of the focal
waist on the retina was estimated using the Gullstrand–
LeGrand model of the human eye to be ω0 ≈ 7.3 μm (calculated
using Gaussian optics) corresponding to a lateral FWHM of
∼8.6 μm. The scan area was sampled in a 300 × 300 grid
with a ∼2 × 2 mm field of view in 3.15 s. Ten serially acquired
volumes centered at the FAZ were obtained per eye in ∼32 s.
During this image acquisition period, patients were asked to
maintain their gaze on a particular target and encouraged to
blink as necessary in order to prevent drying of the cornea.
The automated parsing of the image data strips (Sec. 2.3.1) elim-
inated issues of motion artifact and partial volumes. For the
angiogram, the speckle variance calculation25 was used

EQ-TARGET;temp:intralink-;e001;326;458svjk ¼
1

N

XN
i¼1

�
Iijk −

1

N

XN
i¼1

Iijk

�2

; (1)

where i, j, and k are the indices of the frame, width, and axial
position of the B-scan, respectively, I is the intensity at the
index, and N is the number of repeat acquisitions per BM-
scan (N ¼ 3). Processing of the OCT intensity image data and
en face visualization of the retinal microvasculature was per-
formed in real time using our open source code for alignment
and quality control purposes.26,27

2.2 En Face Angiogram Extraction

Postprocessing of the raw intensity data was performed to
extract optimal quality images of the retinal microvasculature.
Coarse axial motion artifact was corrected using cross-correla-
tion between adjacent B-scans. Subpixel registration was then
performed on each set of three repeat B-scans before computing
the speckle variance angiogram.28 Three-dimensional (3-D)
bounded variance smoothing was applied to the motion-
corrected intensity B-scans in order to reduce the effect of
speckle while preserving and enhancing the boundaries between
retinal layers. The inner limiting membrane (ILM), posterior
surface of the inner plexiform layer (IPL), and posterior
boundary of the outer nuclear layer (ONL) were segmented
automatically in 3-D using a graph-cut algorithm.29 The
automated segmentation was examined and, where needed,
corrected by a trained researcher using Amira (version 5.1;
Visage Imaging, San Diego, California). The angiogram data
from the superficial plexiform layer (ILM to IPL), deep
plexiform layer (IPL to ONL), and all retinal vascular layers
(ILM to ONL) were extracted and averaged in the axial direction
to produce projected en face images of the microvasculature.
Projection artifacts in the deep layer angiogram were attenuated
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using a modified slab-subtraction algorithm.30 In Eq. (2), PRDeep

is the projection resolved en face angiogram of the deep layer,
where Normh: : : i represents the normalization process, NDeep is
the number of pixels in the deep layer,NAll layers is the number of
pixels in all the retinal layers, NSuperficial is the number of pixels
in the superficial layer, and sv is the angiogram
EQ-TARGET;temp:intralink-;e002;63;553
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Contrast-limited adaptive histogram equalization was then
performed on all en face images to enhance the contrast.

2.3 Angiogram Registration

The algorithm overview is shown in Fig. 1. The 10 serially
acquired en face images of all retinal layers were divided
into microsaccade-free strips, which were then registered to a
template image, first using rigid registration for the coarse
alignment, followed by nonrigid registration for finer features.
Transforms applied to the en face image of the full retinal thick-
ness were then applied to both the superficial and deep layer
angiograms.

2.3.1 Microsaccade-free strip generation

For each eye, a microsaccade-free image from the 10 en face
images was chosen as the template image. In the case that all
images contained microsaccadic motion artifacts, a template
was generated by stitching together microsaccade-free strips
using the registration methods discussed below.

After the template image was chosen/generated, the remain-
ing images were divided into strips between positions in the
image corresponding to where the patient fixation was lost,
which appeared as vertical white stripes in the en face image,
as shown in Fig. 2. Strips less than 40 pixels wide often
contained large drift artifact and were therefore discarded.
If multiple microsaccade-free images existed per eye, the first
was selected as the template, and the rest were divided into
three equal-sized strips for registration. Each strip was zero
padded to match the size of the template image and coarsely
aligned to the template by x- and y-translation using maximum
cross-correlation.29

2.3.2 Strip-based affine registration

SIFT keypoints were automatically extracted from both the
template image and each strip to be registered.24 Briefly,
keypoints are the locations of local scale-space extrema in
the difference-of-Gaussian function convolved with the image.
Further refinement to the keypoints can be made by assigning
each keypoint an orientation to achieve invariance to image
rotation. Finally, a local image descriptor is assigned to each
keypoint using the image location, scale, and orientation as
found above. Readers are encouraged to refer to Ref. 24 for
a more detailed description of the SIFT algorithm.

As the SIFT feature descriptor is invariant to uniform scaling
and orientation, it is ideal for identifying matching keypoints in
noisy or speckled images, such as OCT-A angiograms. The
calculation of Euclidean distances in MATLAB® is computa-
tionally expensive, and therefore matching keypoints between
the template and strip were identified as the closest correspond-
ing keypoints by a small angle approximation to the Euclidean
distance. Keypoints were considered matching if the ratio of
the vector angles from the nearest to the second nearest
match was less than a threshold value of 0.75. As the image had
been coarsely aligned in the previous step, a second check was
included to ensure that the matched keypoints were no more
than 40 pixels distant in the x- or y-direction.

All strips that had a minimum of four matched keypoints
were then transformed using an affine transform estimated
using the matching keypoints as inputs to the estimate geometric
transform function in MATLAB®. This function iteratively com-
pares an affine transformation using three randomly selected
keypoints, where the transformation with the smaller distance
metric calculated using the M-estimator sample consensus
algorithm is used as the transformation matrix for the next
comparison. The maximum number of random trials for finding
the inliers was set to 5000 for improved robustness.

2.3.3 Strip-based nonrigid registration

The vertical white lines in the target image in Fig. 2 mark the
image discontinuities due to microsaccades accounted for by the
strip-based affine registration; however, localized mismatch still
remains in the aligned images after this affine registration step.
The next step in our algorithm is to compensate for the smoother
tremor and drift motions represented by image warping and
distortion, by using nonrigid registration. Prior to nonrigid
registration, a 2 × 2 averaging filter was applied to both the
template and the aligned strip to smooth any fine speckle
that may affect the nonrigid registration. The template and
aligned strips were both then zero padded by 15 pixels. For
each pixel, in the strip, the normalized cross-correlation31 was
calculated, defined as

Fig. 1 Overview of the strip-based registration algorithm for multiple serially acquired OCT-A images.
Representative images are used to demonstrate the algorithm in Fig. 2.
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Fig. 2 Demonstration of the image stripping, coarse translation, affine registration, and nonrigid
registration steps of the proposed algorithm. The template image (green) and registered strip (magenta)
are shown as composite images where white regions indicate where the two images have the same
intensities. The areas under the red, orange, and yellow boxes are further explored in Fig. 3.

Fig. 3 Comparison of three different strips registered to the same template image using (a) coarse trans-
lation, (b) affine registration, and (c) nonrigid registration. The template image (green) and registered strip
(magenta) are shown as composite images where white regions indicate where the two images have the
same intensities.
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EQ-TARGET;temp:intralink-;e003;63;355xcorrnormðs; tÞ¼
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r ;

(3)

where fðx; yÞ is the 29 × 29 pixel matrix field centered on
the ðx; yÞ pixel of the template image, fs;t is the mean of the
image in the region under the mask, m is the 15 × 15 pixel
mask matrix centered on the pixel of the strip, and m̄ is the
mean of the mask. This was also done for −15 deg, −10 deg,
−5 deg, 5 deg, 10 deg, and 15 deg rotated field matrices. The
pixel located at the index of the maximum normalized cross-
correlation was then used as the registered pixel for the strip.
Figure 2 shows a pictorial schematic of the registration pipeline
described in this section. A smaller field of view demonstration
of the coarse, affine, and nonrigid registration steps is shown
in Fig. 3. The stack of registered strips could then either be
combined by taking the mean or median to generate a higher
quality image.

2.4 Validation

The performance of the algorithm was evaluated with qualitative
observation and quantitative measures of the CNR, SNR, and
structural similarity index (SSIM).

The CNR32,33 is defined as

EQ-TARGET;temp:intralink-;e004;326;344CNR ¼ 10 log
μr þ μbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2r þ σ2b

p ; (4)

where μr and σ2r are the mean and variance of the whole image,
respectively, and μb and σ2b are the mean and variance of the
background noise region, respectively. The background noise
region was selected to be the largest rectangle that would fit
within the FAZ. As this is an area of nonperfusion, any signal
located here in a healthy eye can be considered noise. Vessel
segmentation to delineate the pure signal34 was not used here,
as the quality metric was only used for intravolume comparison
to measure the trends.

The SNR32,33 is defined as

EQ-TARGET;temp:intralink-;e005;326;189SNR ¼ 10 log
max ðXlinÞ2

σ2lin
; (5)

where Xlin is the matrix of pixel values in the angiogram on a
linear intensity scale and σ2lin is the noise variance on a linear
intensity scale. The background noise region selected was the
same used in the CNR calculations.

The SSIM35 is a quality metric used to measure the perceived
relative quality of a digital image and is defined as

Fig. 4 Template image, mean, and median averaged images (all retinal layers, superficial, and deep
plexus) for subject 3 oculus dexter, a healthy male subject, 29 years of age.

Journal of Biomedical Optics 036007-5 March 2017 • Vol. 22(3)

Heisler et al.: Strip-based registration of serially acquired optical coherence tomography angiography



EQ-TARGET;temp:intralink-;e006;63;752SSIMðx; yÞ ¼ ð2μxμy þ c1Þð2σxy þ c2Þ
ðμ2x þ μ2y þ c1Þðσ2x þ σ2y þ c2Þ

; (6)

where x is the image to be compared, y is the final averaged
image, and μ, σ2, and σ are the average, variance, and covari-
ance, respectively. The terms c1 and c2 are small constants ≪1
added to avoid instability when μ2x þ μ2y or σ2x þ σ2y are equal
to zero.

3 Results
A total of 10 eyes from six healthy volunteers (4 males and 2
females) aged 36.8� 9.3 years were acquired according to the
imaging protocol. A comparison of the template image and the
final averaged OCT-A images for all retinal layers, as well as the
superficial and deep vascular layers is shown in Figs. 4 and 5.
In the template images, the vessels near the FAZ are relatively
clear; however, it becomes harder to differentiate the vessels fur-
ther toward the periphery. In contrast, the vessels in the averaged
images are clearly seen throughout. Improvement in vessel
visibility is particularly marked in the deep layer, where the
OCT signal strength is weaker. Qualitatively the median images
appear sharper than the mean images as the median averaging
acts as a speckle reducing filter. However, the mean images
appear more smooth than the corresponding median image.

For quantitative comparisons of the template and final
averaged images, the average CNR and SNR of the images
were calculated. The average CNR of the angiograms with
all retinal layers increased from 0.52� 0.22 dB using the
template images to 0.77� 0.25 dB with the mean images and
0.75� 0.24 dB with the median images. Additionally, the
average SNR of the angiograms with all retinal layers increased
from 19.58� 4.04 dB using the template images to 25.05�
4.73 dB with the mean images and 25.02� 4.89 dB with
the median images. The mean improvement of both the CNR
and SNR was statistically significant (p < 0.01) using a paired
t-test.

To evaluate the change in perceptual quality per strip, the
SSIM was calculated on each incremental averaged image of
the template and registered strips. Although 10 volumes were
acquired per eye, the number of microsaccades and strips less
than 40 pixels in the corresponding en face images was different
for all eyes, and therefore the number of strips used to generate
the averaged images was not necessarily equal. The mean
number of strips per eye was 21� 7 strips. As seen in Fig. 6,
the SSIM values show a rapid increase as the first few strips
are registered and applied to the template image, and then
the rate of improvement slows with additional registered strips.
This trend was observed in both the mean and median averaged
images.

Fig. 5 Template image, mean, and median images (all retinal layers, superficial, and deep plexus) for
subject 6 oculus sinister, a healthy male subject, 56 years of age.
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4 Discussion
The major findings in this paper are as follows: averaging multi-
ple registered sequentially acquired OCT-A images (1) qualita-
tively enhances the visualization of the retinal microvasculature
networks, (2) increases the SNR and CNR of the angiograms,
and (3) increases the perceptual visual quality when using SSIM
as a metric.

After averaging multiple en face images, the vessels of the
deeper capillary plexus are more readily identified, making
quantification more reliable and thereby facilitating investiga-
tion of its role in the pathophysiology of retinal vascular disease.
Although minimal projection artifact can still be seen in Fig. 4
corresponding to the larger superficial vessels, the overall
qualitative condition of the en face images is improved.

The SNR and CNR both increased significantly by averaging
the individual strips. Although both the SNR and CNR of the
mean images are larger than those of the median images, there is
no significant difference between the mean and median, and
therefore no recommendation of an averaging method can be
made based on these metrics.

The SSIM is a full reference metric where the final averaged
image was taken to be the perfect quality reference image. Note
that each of the 10 volumetric sets for each subject was divided
differently, depending on the motion in a particular acquisition,
and therefore a different number of strips were used for
each averaged reference image. SSIM is a relative metric,
and an SSIM value of 1 indicates that the image has reached
the same quality as the reference image for that data set. The
SSIM values cannot be compared across different images, for
example, an SSIM value of 1 for different images does not
indicate that they are all of the same quality. As shown in Fig. 6,

the SSIM increases with each additional registered strip that is
averaged to the template image. As expected when averaging
images, the first few strips applied to the template affected the
SSIM the most whereas the later strips provided only modest
improvement to the SSIM. The deep plexus showed the greatest
increase overall. By increasing the visibility of individual vessels,
this technique has the potential to improve automated segmen-
tation results thereby improving our ability to quantify capillary
density in normal and diseased states.

Although we have demonstrated the ability to enhance the
visualization of the retinal plexuses through averaging multiple
sequentially acquired OCT-A images, we acknowledge several
limitations of this work. This study assessed only relatively
young subjects with clear ocular media and good fixation ability.
The presence of media opacities in older subjects may limit
the amount of capillary information that can be attained from
images. Although the algorithm attenuates nonmicrosaccade
motion in the registered strips, the template may contain distor-
tions and image warping, which is not accounted for here.
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Fig. 6 SSIM values for incremental averaged images for all eyes for the all retinal layers, superficial
layers, and deep layers.

Journal of Biomedical Optics 036007-7 March 2017 • Vol. 22(3)

Heisler et al.: Strip-based registration of serially acquired optical coherence tomography angiography



References
1. M. S. Mahmud et al., “Review of speckle and phase variance optical

coherence tomography to visualize microvascular networks,” J. Biomed.
Opt. 18(5), 050901 (2013).

2. A. Zhang et al., “Methods and algorithms for optical coherence tomog-
raphy-based angiography: a review and comparison,” J. Biomed. Opt.
20(10), 100901 (2015).

3. I. Gorczynska et al., “Comparison of amplitude-decorrelation, speckle-
variance and phase-variance OCTangiography methods for imaging the
human retina and choroid,” Biomed. Opt. Express 7(3), 911–942 (2016).

4. Y. Jia et al., “Split-spectrum amplitude-decorrelation angiography with
optical coherence tomography,” Opt. Express 20(4), 4710–4725 (2012).

5. J. Xu et al., “Retinal angiography with real-time speckle variance optical
coherence tomography,” Br. J. Ophthalmol. 99(10), 1–5 (2015).

6. Z. Mammo et al., “Quantitative noninvasive angiography of the fovea
centralis using speckle variance optical coherence tomography speckle
variance optical coherence tomography of macula,” Invest. Ophthalmol.
Vis. Sci. 56(9), 5074–5086 (2015).

7. K. R. Mendis et al., “Correlation of histologic and clinical images to
determine the diagnostic value of fluorescein angiography for studying
retinal capillary detail,” Invest. Ophthalmol. Vis. Sci. 51(11), 5864–
5869 (2010).

8. P. E. Z. Tan et al., “Quantitative comparison of retinal capillary images
derived by speckle variance optical coherence tomography with histol-
ogy,” Invest. Ophthalmol. Vis. Sci. 56(6), 3989–3996 (2015).

9. G. Chan et al., “In vivo optical imaging of human retinal capillary
networks using speckle variance optical coherence tomography
with quantitative clinico-histological correlation,” Microvasc. Res. 100,
32–39 (2015).

10. P. K. Yu et al., “Label-free density measurements of radial peripapillary
capillaries in the human retina,” PLoS One 10(8), e0135151 (2015).

11. J. G. Christenbury et al., “OCTangiography of paracentral acute middle
maculopathy associated with central retinal artery occlusion and deep
capillary ischemia,” Ophthalmic Surg. Lasers Imaging Retina 46(5),
579–581 (2015).

12. M. A. Khan et al., “En face optical coherence tomography imaging of
deep capillary plexus abnormalities in paracentral acute middle macul-
opathy,” Ophthalmic Surg. Lasers Imaging Retina 46(9), 972–975
(2015).

13. G. Casalino, “Optical coherence tomography angiography in paracen-
tral acute middle maculopathy secondary to central retinal vein occlu-
sion,” Eye 44, 1–6 (2016).

14. N. Hasegawa et al., “New insights into microaneurysms in the deep
capillary plexus detected by optical coherence tomography angiography
in diabetic macular edema,” Invest. Ophthalmol. Vis. Sci. 57(9),
OCT348 (2016).

15. P. D. Bradley et al., “The evaluation of diabetic macular ischemia using
optical coherence tomography angiography,” Invest. Ophthalmol. Vis.
Sci. 57(2), 626–631 (2016).

16. T. S. Hwang et al., “Automated quantification of capillary nonperfusion
using optical coherence tomography angiography in diabetic retinopa-
thy,” JAMA Ophthalmol. 134(4), 367–373 (2016).

17. C. Balaratnasingam et al., “Visual acuity is correlated with the area
of the foveal avascular zone in diabetic retinopathy and retinal vein
occlusion,” Ophthalmology 123(11), 2352–2367 (2016).

18. Z. Mammo et al., “Quantitative optical coherence tomography angiog-
raphy of radial peripapillary capillaries in glaucoma, glaucoma suspect,
and normal eyes,” Am. J. Ophthalmol. 170, 41–49 (2016).

19. K. Kurokawa et al., “Three-dimensional retinal and choroidal capillary
imaging by power Doppler optical coherence angiography with adaptive
optics,” Opt. Express 20(20), 22796–22812 (2012).

20. M. F. Kraus et al., “Quantitative 3D-OCTmotion correction with tilt and
illumination correction, robust similarity measure and regularization,”
Biomed. Opt. Express 5(8), 2591–2613 (2014).

21. H. C. Hendargo et al., “Automated non-rigid registration and mosaicing
for robust imaging of distinct retinal capillary beds using speckle
variance optical coherence tomography,” Biomed. Opt. Express 4(6),
803–821 (2013).

22. P. Zang et al., “Automated motion correction using parallel-strip regis-
tration for wide-field en face OCT angiogram,” Biomed. Opt. Express
7(7), 3822–3832 (2016).

23. D. Ruminski et al., “OCT angiography by absolute intensity difference
applied to normal and diseased human retinas,” Biomed. Opt. Express
6(8), 2738–2754 (2015).

24. D. G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis. 60(2), 91–110 (2004).

25. A. Mariampillai et al., “Speckle variance detection of microvasculature
using swept-source optical coherence tomography,” Opt. Lett. 33(13),
1530–1532 (2008).

26. J. Xu et al., “Real-time acquisition and display of flow contrast using
speckle variance optical coherence tomography in a graphics processing
unit,” J. Biomed. Opt. 19(2), 026001 (2014).

27. Y. Jian, K. Wong, and M. V. Sarunic, “Graphics processing unit accel-
erated optical coherence tomography processing at megahertz axial scan
rate and high resolution video rate volumetric rendering,” J. Biomed.
Opt. 18(2), 026002 (2013).

28. M. Guizar-Sicairos, S. T. Thurman, and J. R. Fienup, “Efficient subpixel
image registration algorithms,” Opt. Lett. 33(2), 156–158 (2008).

29. S. Lee et al., “Comparative analysis of repeatability of manual and auto-
mated choroidal thickness measurements in nonneovascular age-related
macular degeneration,” Invest. Ophthalmol. Vis. Sci. 54(4), 2864–2871
(2013).

30. A. Zhang, Q. Zhang, and R. K. Wang, “Minimizing projection artifacts
for accurate presentation of choroidal neovascularization in OCT micro-
angiography,” Biomed. Opt. Express 6(10), 369–380 (2015).

31. J. P. Lewis, “Fast normalized cross-correlation,” in Proc. of Vision
Interface, Vol. 1995, No. 1, pp. 120–123 (1995).

32. A. Ozcan et al., “Speckle reduction in optical coherence tomography
images using digital filtering,” J. Opt. Soc. Am. A: Opt. Image Sci. Vis.
24(7), 1901–1910 (2007).

33. D. C. Adler, T. H. Ko, and J. G. Fujimoto, “Speckle reduction in optical
coherence tomography images by use of a spatially adaptive wavelet
filter,” Opt. Lett. 29(24), 2878–2880 (2004).

34. A. Lozzi et al., “Image quality metrics for optical coherence angiogra-
phy,” Biomed. Opt. Express 6(7), 2435 (2015).

35. Z. Wang et al., “Image quality assessment: from error visibility to
structural similarity,” IEEE Trans. Image Process. 13(4), 600–612
(2004).

Biographies for the authors are not available.

Journal of Biomedical Optics 036007-8 March 2017 • Vol. 22(3)

Heisler et al.: Strip-based registration of serially acquired optical coherence tomography angiography

http://dx.doi.org/10.1117/1.JBO.18.5.050901
http://dx.doi.org/10.1117/1.JBO.18.5.050901
http://dx.doi.org/10.1117/1.JBO.20.10.100901
http://dx.doi.org/10.1364/BOE.7.000911
http://dx.doi.org/10.1364/OE.20.004710
http://dx.doi.org/10.1136/bjophthalmol-2014-306010
http://dx.doi.org/10.1167/iovs.15-16773
http://dx.doi.org/10.1167/iovs.15-16773
http://dx.doi.org/10.1167/iovs.10-5333
http://dx.doi.org/10.1167/iovs.14-15879
http://dx.doi.org/10.1016/j.mvr.2015.04.006
http://dx.doi.org/10.1371/journal.pone.0135151
http://dx.doi.org/10.3928/23258160-20150521-11
http://dx.doi.org/10.3928/23258160-20151008-12
http://dx.doi.org/10.1038/eye.2016.57
http://dx.doi.org/10.1167/iovs.15-18782
http://dx.doi.org/10.1167/iovs.15-18034
http://dx.doi.org/10.1167/iovs.15-18034
http://dx.doi.org/10.1001/jamaophthalmol.2015.5658
http://dx.doi.org/10.1016/j.ajo.2016.07.015
http://dx.doi.org/10.1364/OE.20.022796
http://dx.doi.org/10.1364/BOE.5.002591
http://dx.doi.org/10.1364/BOE.4.000803
http://dx.doi.org/10.1364/BOE.7.002823
http://dx.doi.org/10.1364/BOE.6.002738
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1364/OL.33.001530
http://dx.doi.org/10.1117/1.JBO.19.2.026001
http://dx.doi.org/10.1117/1.JBO.18.2.026002
http://dx.doi.org/10.1117/1.JBO.18.2.026002
http://dx.doi.org/10.1364/OL.33.000156
http://dx.doi.org/10.1167/iovs.12-11521
http://dx.doi.org/10.1038/srep10051.9
http://dx.doi.org/10.1007/s00034-009-9130-7
http://dx.doi.org/10.1007/s00034-009-9130-7
http://dx.doi.org/10.1364/JOSAA.24.001901
http://dx.doi.org/10.1364/OL.29.002878
http://dx.doi.org/10.1364/BOE.6.002435
http://dx.doi.org/10.1109/TIP.2003.819861

