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Abstract. The attenuation of near-infrared (NIR) light intensity as it propagates in a turbid medium like biological
tissue is described by modified the Beer–Lambert law (MBLL). The MBLL is generally used to quantify the
changes in tissue chromophore concentrations for NIR spectroscopic data analysis. Even though MBLL is effec-
tive in terms of providing qualitative comparison, it suffers from its applicability across tissue types and tissue
dimensions. In this work, we introduce Lambert-W function-based modeling for light propagation in biological
tissues, which is a generalized version of the Beer–Lambert model. The proposed modeling provides paramet-
rization of tissue properties, which includes two attenuation coefficients μ0 and η. We validated our model against
the Monte Carlo simulation, which is the gold standard for modeling NIR light propagation in biological tissue. We
included numerous human and animal tissues to validate the proposed empirical model, including an inhomo-
geneous adult human head model. The proposed model, which has a closed form (analytical), is first of its kind in
providing accurate modeling of NIR light propagation in biological tissues. © 2016 Society of Photo-Optical Instrumentation

Engineers (SPIE) [DOI: 10.1117/1.JBO.21.7.076012]
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1 Introduction
Near-infrared spectroscopy (NIRS) is one of the widely used
noninvasive techniques for monitoring brain function assay and
breast imaging. It makes use of the optical properties such as
absorption and scattering to provide the pathophysiological
information about the tissue under investigation. The wave-
length window between 650 and 950 nm, also known as the
NIR window, is often utilized for NIR imaging due to less
absorption and scattering of light in biological tissues. The
NIR light that propagates in the tissue goes under multiple scat-
terings; modeling of this NIR light propagation in the tissue has
been an active area. Moreover, these models provide insights
into the clinical/experimental investigations that are either car-
ried out or being planned. These models are often repetitively
utilized in NIR image reconstruction procedures and are
extremely useful to assess the sensitivity/specificity of the
experimental investigations.1–4

Light propagation under multiple scattering conditions,
which is typically the case for tissues having thickness >1 cm,
has been modeled accurately either using radiative transfer
equation (RTE) or Monte Carlo (MC) simulation. In case of
thin tissues, the Beer–Lambert law is often utilized, but its utility
is often limited, especially for in vivo imaging cases. The modi-
fied Beer–Lambert law (MBLL) is an empirical description of
light propagation in thick tissues, widely used in NIRS.5–7 This
utilizes a “differential pathlength factor” (DPF), which gives a
ratio of the mean photon pathlength to the source detector dis-
tance. The DPF values are usually taken from the literature for a
given tissue type and often require additional measurements

(time-resolved ones) to accurately estimate these values.8 Note
also that DPF values are dependent on the source–detector dis-
tance and require a careful choice for obtaining useful informa-
tion. There have been various studies to show that this model
may be applicable for measuring global changes in the optical
absorption coefficient and incapable of determining the relative
local (focal) changes in it.9

However, in the past,10–12 there have been investigations on
the accuracy of MBLL. Boas et al.10 observed that the results of
optical simulation for in vivo data suggested that standard
MBLL analysis cannot accurately quantify relative changes in
the concentration of chromophores. In fact, standard MBLL
analysis could produce inaccurate results due to uncontrolled
changes in DPF with the source–detector positions and optical
properties of the medium. Uludag et al.12 also observed the erro-
neous calculation due to the partial volume effect and its wave-
length dependence.

The RTE, which is an accurate model for light propagation in
biological tissues, can be further simplified by representing the
solution in the form of spherical harmonics, which leads to an
ðN þ 1Þ2 system of connected partial differential equations
known as the PN approximation. These could be further reduced
to a single differential equation of order (N þ 1). For N ¼ 1, it
leads to the popular diffusion equation (DE). The MBLL is
based on RTE solution’s functional dependence on μa.

13

The limitation of RTE usage in modeling the light propaga-
tion in biological tissues lies with the computational complexity,
which often requires very lengthy computer run times. The DE
is relatively efficient compared to RTE, but has limitations in
terms of its validity for all tissue types. It is applicable when
the absorption coefficient of tissue is much less than its reduced
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scattering coefficient (i.e., μa ≪ μ 0
s) and the light goes under

multiple scattering (thickness >1 cm).14

The MC simulation provides a numerical model for random
migration of photons in tissue and known to be a gold standard
for modeling NIR light propagation. It is universally applicable
for all tissue types and tissue length scales. In this, NIR light is
modeled as distinct photon packets, which are traced through the
tissue with utilization of random numbers and optical properties
of tissue.15 To achieve reasonable accuracy, the MC simulation
requires a large number of photon packets to be traced through
the tissue due to the statistical nature of modeling. It becomes
prohibitively expensive in terms of computation time when the
absorption coefficient is much less than the scattering coefficient
as the photon packet may propagate a long distance before being
exited/absorbed in the tissue.

In lieu of existing modeling methods for light propagation in
biological tissue, there is a clear niche for an improved model,
which is universally applicable and overcomes the limitations of
existing models. Here, we introduce Lambert-W function-based
modeling, which is a generalized version of the well-known
Beer–Lambert law. The Lambert-W function has applications
in various scientific disciplines, and recently it has been utilized
in modeling of kilovoltage x-ray beam attenuation.16 It will be
shown that the proposed model has a computational complexity
far less compared with the existing methods and provides a close
match to the gold standard modeling techniques, such as MC
simulation.

Moreover, this also provides an easy and intuitive parameter-
ization of tissue optical properties based on Lambert-W
function. In the end, a comprehensive discussion of how this
parameterization correlates with optical absorption and scatter-
ing coefficients was also provided. Note that, as the discussion
here is limited light attenuation in the biological tissue, the com-
parison of applicability of the proposed model was performed
with pure-intensity (attenuation) data.

2 Methods

2.1 Modified Beer–Lambert Law

As mentioned earlier, the MBLL is widely used in NIR spectro-
scopic data analysis to quantify the changes in tissue chromo-
phore concentrations. DPF is a parameter that accounts for
increases in photon pathlength due to multiple light scattering
in tissue.1,17–19 The theory of MBLL has been explained earlier
in Refs. 5 and 6. Briefly, it provides an empirical model for
description of optical attenuation in highly scattering medium.
The MBLL is given by

EQ-TARGET;temp:intralink-;e001;63;224I ¼ I0e−μa×DPF×d þ g (1)

or alternatively

EQ-TARGET;temp:intralink-;e002;63;181OD ¼ − log
I
I0

¼ μa × DPF × dþ G; (2)

where I is the detected light intensity, I0 is the incident light
intensity, OD is the optical density, d is the source–detector
distance, and μa is the optical absorption coefficient. log is a
natural algorithm with base e. g and G are appropriate factors
that account for the measurement geometry. The total mean path
length of detected photons is DPF × d ¼ L. Recently, Sassaroli
and Fantini6 showed that the above equation is partially incorrect.

L should be written as its average over the range of the absorp-
tion coefficient 0 − μa, i.e.,

EQ-TARGET;temp:intralink-;e003;326;730L̃ðμaÞ ¼
1

μa

Z
μa

0

Ldμ 0
a: (3)

The term L̃ represents the mean average path length. If G
can be regarded constant and the absorption changes homo-
geneously in the illuminated tissue volume; then, for relatively
small changes of attenuation, Eq. (2) leads to the definition of
DPF as

EQ-TARGET;temp:intralink-;e004;326;632DPF ¼ 1

d
∂OD
∂μa

: (4)

Note that in this work, the measurement geometry has been
identical in all the experiments carried out, essentially makingG
not having any effect on the comparison of presented results.
Further, while considering two OD data points for interpolation
purpose, i.e., (ΔOD), G cancels out. Thus, making the G factor
ineffective. Given Eq. (4), now DPF can be related to tissue opti-
cal properties, namely optical absorption coefficient (μa) and
reduced scattering coefficient (μ 0

s) by using the diffusion theory.

2.1.1 Infinite geometry model solution

The equation of steady-state photon diffusion in a homogeneous
medium is

EQ-TARGET;temp:intralink-;e005;326;449∇2ΦðrÞ − μa
D

ΦðrÞ ¼ −
qoðrÞ
D

; (5)

where ϕ is the photon density,D is the diffusion coefficient, and
qo is the source term. This equation has a well-known closed-
form solution of the form20

EQ-TARGET;temp:intralink-;e006;326;373

I
Io

¼ 1

4πD
1

d
expð−μeffdÞ; (6)

where μeff ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3μaμ

0
s

p
. By using the definition of DPF

provided by Fantini et al.21 or Arridge et al.,22 DPF ¼
f∂½logðI∕IoÞ�∕∂μag∕d for an infinite geometry model, diffusion
theory gives the following relationship between DPF and the
optical parameters of the tissue21,23

EQ-TARGET;temp:intralink-;e007;326;273DPFinf ¼
1

d
∂
∂μa

�
log

�
I
Io

��
¼ ∂

∂μa
ðμeffÞ ¼

ffiffiffiffiffiffiffi
3μ 0

s

p
2

ffiffiffiffiffi
μa

p : (7)

2.1.2 Semi-infinite geometry model solution

Similar to the above analysis, for the semi-infinite geometry,
the formula between DPF and optical coefficients can be
given as23–26

EQ-TARGET;temp:intralink-;e008;326;162DPFseminf ¼
ffiffiffiffiffiffiffi
3μ 0

s

p
2

ffiffiffiffiffi
μa

p ðd
ffiffiffiffiffiffiffiffiffiffiffiffi
3μaμ

0
s

p
Þ

ðd
ffiffiffiffiffiffiffiffiffiffiffiffi
3μaμ

0
s

p
þ 1Þ : (8)

However, DPF for semi-infinite geometry increases with the
increase in source–detector distance and reaches an asymptotic
value.21 Note that both of these DPF definitions for these
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geometries are obtained by utilizing Green’s function solution to
DE in these geometries.

Obviously, DPFseminf ≠ DPFinf and semi-infinite geometry is
widely used for noninvasive diffuse wave reflectance spectros-
copy. As these analytical definitions have shown to have a good
agreement with experimentally found values, we also utilized
these formulas for the MBLL model. It is to be noted that
the DPF formula given by Eq. (8) depends upon the source–
detector distance, while the other Eq. (7) does not. Although
semi-infinite geometry is widely preferred in NIRS experiments,
the infinite geometry solution provides a quick way of calculat-
ing the optical properties without having dependency on the
source–detector distance. This [formula given by Eq. (7)] pro-
vides a powerful tool to analyze NIRS data.

2.2 Monte Carlo Model

The MC model provides a numerical, rather statistical, solu-
tion of RTE and is used as the gold standard for describing
light propagation in tissue. The MC model is widely appli-
cable irrespective of the tissue thickness, optical properties,
and source–detector distance. It is described in detail in
Refs. 14 and 27.

Briefly, a photon packet with an initial weight of unity is
launched in orthogonal direction to the tissue surface. Then,
a step size is chosen based on a random number with the
help of the following expression:

EQ-TARGET;temp:intralink-;e009;63;458l ¼ − logðξÞ
μa þ μs

; (9)

where ξ is a random number equidistributed between 0 and 1, μs
is the optical scattering coefficient, and l is the step size. At
each step, the photon packet is split into two parts; one part
is absorbed and another transmitted (scattered). The fraction
that is transmitted is given by

EQ-TARGET;temp:intralink-;e010;63;359W 0 ¼ W ×
μs

μa þ μs
; (10)

where W 0 is the weight of the scattered (transmitted) photon
after each interaction and W is the original weight before inter-
action. The scattered photon direction is computed by the
Henyey–Greenstein phase function, which gives the deflection
angle θ as

EQ-TARGET;temp:intralink-;e011;63;263 cosðθÞ ¼ 1

2 g

�
1þ g2 −

�
1 − g2

1 − gþ 2 gξ

�
2
�
; (11)

where g is called as the anistropic factor; note that μ 0
s ¼

μsð1 − gÞ. The azimuthal angle ψ is also distributed over the
interval 0 to 2π and is sampled as

EQ-TARGET;temp:intralink-;e012;63;185ψ ¼ 2πξ: (12)

The interaction of the photon packet with the tissue surface is
modeled with the help of Fresnel’s equation, primarily to deter-
mine the internal reflection. The photon is terminated when the
weight of the photon is less than a preset threshold (here, 10−4).
Often, a “Russian roulette” is used to a give a chance to the ter-
minable photon packet.

If the photon packet exits in the boundary of the tissue, then
the photon packet weight is contributed to the diffuse reflectance

or transmittance. If reflection occurs, the photon packet is again
traced until it exits or terminates. Afterward, another photon
packet is launched into the medium. This process is repeated
until statistically meaningful results are obtained, usually requir-
ing about 1 to 10 million photon packets to be launched. In this
work, 100 million photon packets are traced as the source–
detector distance was in the range of 3 to 40 mm, as well as
to obtain higher signal-to-noise ratio values for the diffuse
reflectance/transmittance measurements. To keep the computa-
tional run times lower, the parallel implementation of MC sim-
ulation was utilized as described in Ref. 15.

2.3 Diffusion Equation

For most biological tissues in the NIR spectral range, the
reduced scattering coefficient (μ 0

s) is much larger than the
absorption coefficient (μa). As the discussion in this work is
about thick biological tissues, which tend to be highly diffusive,
the DE provides a good model for describing the light propa-
gation in tissues. The DE is given by

EQ-TARGET;temp:intralink-;e013;326;535−∇ · ½DðrÞ∇ΦðrÞ� þ μaðrÞΦðrÞ ¼ qoðrÞ; (13)

where qoðrÞ and ΦðrÞ represent the isotropic light source and
diffuse photon density/intensity (real values), respectively, at
position r andDðrÞ is the diffusion coefficient. In a space invari-
ant medium, this equation becomes as Eq. (5). Φ is found
by solving this partial differential equation [Eq. (13)] using
finite-element method (FEM), providing versatility in accom-
modating irregular geometries.28–30 We have utilized the near
infrared fluorescence and spectral tomography (NIRFAST)
package,31 which is based on the FEM formulation and data
type being diffuse transmittance/ reflectance.

2.4 Generalized Beer–Lambert Law (Proposed
Model)

The MBLL describes the attenuation of photons as they propa-
gate along a medium and is described by Eq. (1). Many analyti-
cal models have been proposed to improve the accuracy of
photon attenuation models in higher energy side of the light
spectrum.32–34 As mentioned earlier, a recently proposed empir-
ical model was proven to be more accurate for narrow poly-ener-
getic x-ray beam, which effectively took into account the
scattering of x-ray photons. Similar to that, we propose a param-
eterization for describing the attenuation of NIR light through
biological tissue as

EQ-TARGET;temp:intralink-;e014;326;230I ¼ I0e−μ̄�d; (14)

which is a standard Beer–Lambert’s law, but here, μ̄ is written as

EQ-TARGET;temp:intralink-;e015;326;179μ̄ ¼ μ0 þ η
I
I0
; (15)

where μ0 and η are two unknown parameters that represent the
optical properties in the proposed parameterization scheme.
Substituting Eqs. (15) in (14) results in

EQ-TARGET;temp:intralink-;e016;326;103I ¼ I0e
−
�
μ0þη I

I0

�
d: (16)
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Rearranging terms leads to

EQ-TARGET;temp:intralink-;e017;63;741

�
ηd

I
I0

�
eðηd I

I0
Þ ¼ ηde−μ0d; (17)

which is of the Lambert-W function (also known as omega func-
tion, represented by W) form. That is of the form

EQ-TARGET;temp:intralink-;e018;63;675WðxÞeWðxÞ ¼ x: (18)

Equating Eqs. (17) and (18) makes

EQ-TARGET;temp:intralink-;e019;63;631x ¼ ηde−μ0d; WðxÞ ¼ Wðηde−μ0dÞ ¼ ηd
I
I0

(19)

whose solution involves the Lamber-W function (readers are
advised to refer to Appendix A of16) given by

EQ-TARGET;temp:intralink-;e020;63;566I ¼ I0
ηd

Wðηde−μ0dÞ: (20)

Note that W is a multivalued inverse of the function defined
in Eq. (18). Also, when η ¼ 0 and μ0 ¼ μa × DPF, it reduces to
Eq. (1) (MBLL). Therefore, Eq. (20) represents a generalized
form of the Beer–Lambert law.

In this case, OD can be written as

EQ-TARGET;temp:intralink-;e021;63;468OD ¼ − log
I
I0

¼ logðηÞ þ logðdÞ − log
h
Wðηde−μ0dÞ

i
:

(21)

The two attenuation coefficients μ0 and η are included in the
generalized Beer–Lambert law (GBLL). These are not an alter-
native to DPF, which is used to compute the more accurate path
length. They provide a way of parametrization to describe NIR
light propagation in biological tissues.

2.5 Physical Significance of μ0 and η

From Eqs. (15) and (20), the proposed model can be written as

EQ-TARGET;temp:intralink-;e022;63;316μ̄ ¼ μo þ η
Wðηxe−μ0xÞ

ηx
: (22)

The rate of change of total attenuation coefficient, i.e., dμ̄∕dx
can be written as

EQ-TARGET;temp:intralink-;e023;63;249

dμ̄
dx

¼ d
dx

�
Wðηxe−μ0xÞ

x

�

¼ −
1

x2
½Wðηxe−μ0xÞ−W 0ðηxe−μ0xÞ · ηxe−μ0x · ð1− μoxÞ�:

(23)

So, the rate of change of μ̄ (total attenuation coefficient) varies
with distance x. The larger the distance x from the NIR light
source is, the smaller the variation in μ̄ is.

For the case x ¼ 0, the value of Lambert-W function is
0.35 The derivative of W function with respect to x is
dW∕dx ¼ 1∕xþ eWðxÞ. The value of the derivative at x ¼ 0,
i.e., W 0ð0Þ ¼ 1. This converts Eq. (22) as follows:

EQ-TARGET;temp:intralink-;e024;326;616

lim
x→0

μ̄ ¼ lim
x→0

�
μo þ

Wðηxe−μ0xÞ
x

�

¼ lim
x→0

	
μo þ

W 0ðηxe−μ0xÞ
1

η½e−μ0x þ e−μ0xð−μoxÞ�



¼ μo þ η (24)

and as x tends to infinite boundary, where all photons gets
attenuated, this becomes

EQ-TARGET;temp:intralink-;e025;326;512 lim
x→∞

μ̄ ¼ μ0: (25)

The total attenuation coefficient at distance x ¼ 0, half value
layer, quarter value layer, and at infinity is listed in Table 1,

This analysis infers the following:

• The rate of change of μ̄ (total attenuation coefficient) is a
gradually decreasing function with distance [also evident
from Eq. (23)].

• η is the finite change in the total attenuation coefficient (μ̄)
as the light travels from the tissue surface to the infinite
boundary (where all photons die). This can be observed
from Table 1 as well.

• When η ¼ 0; μ̄ ¼ μ0 ¼ constant, which is the standard
form of the basic Beer–Lambert law and works well in
the case of scattering-less media. In biological tissues,
which are more turbid in nature, the scattering induces
a nonlinear change in the observed intensity at the boun-
dary. This necessitates a model to incorporate the variation
of attenuation coefficient with distance, which is pre-
sented in this work.

Thus, the two parameters μ0 and η can be defined as follows.
μ0 is the attenuation coefficient at which light would have
attenuated per unit length in the absence of scattering events.
η is the finite change in total attenuation coefficient (μ̄) as
the light travels from the tissue surface to the infinite boundary,
within a turbid media, like biological tissue.

This means μ0 is going to be the minimum value of the total
attenuation coefficient that the incident NIR photon beam will
ever go through. The nearest detectors from the source will
observe larger total attenuation coefficient (μ̄). The decrease
in μ̄ will happen gradually and reach a minimum at infinite
source–detector separation.

2.6 Normalization of the Data

The intensity values can be computed from Eq. (20). However,
these values are very small and range up to 10th to 12th

Table 1 Total attenuation coefficients versus distance/depth x .

x μ̄

At x ¼ 0 μ̄ ¼ μ0 þ η

At x ¼ HVL μ̄ ¼ μ0 þ η
2

At x ¼ QVL μ̄ ¼ μ0 þ η
4

At x ¼ ∞ μ̄ ¼ μ0
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exponents in decimals. To avoid the round-off error, we consider
OD, a similar quantity computed in logarithmic domain. The
OD is given by Eq. (21), which is derived from Eq. (20).

The normalization has been performed to lower the dynamic
range of OD and for easy interpretation of results. The OD data
was divided with the first OD value (at the first suitable detec-
tor), in -line with normalizations performed in the literature.
This normalization also takes care of variations in the source
modeling, including the source strength. Note that, in our expe-
rience, the normalization of experimental data to reduce the
dynamic range helps to find the optimal parameters (μ0 and
η) that provide the least-squares fit. Then, the model values
are rescaled to map the original dynamic range.

Equation (21) was fit to OD versus source–detector distance
(d) data in MATLAB R2013b by nonlinear least square regres-
sion, which used the Levenberg–Marquardt algorithm36 to deter-
mine the values of the two parameters μ0 and η. The μ0 and η
values for various tissues have been mentioned in Table 4. This
table also explores the relation between these two parameters
and the diffusion coefficient

ffiffiffiffiffiffiffiffiffiffiffiffi
3μaμ

0
s

p
.

3 Numerical Experiments
MC simulations (parallel implementation by Qiang15) were per-
formed to assess the parameters μ0 and η of the proposed model
and compare the various light propagation models discussed
here. A semi-infinite mesh with a depth of 2.5 cm (z-axis)
and another mimicking infinite media (the depth being
108 cm) were considered for numerical experiments for semi-
infinite and infinite geometry, respectively. These two geom-
etries were utilized in MBLL computations, as the DPF value
is different for the two types of geometries.

As required in MC simulations,15 the grid element was fixed
at 2 mm × 2 mm × 2 mm in size. The anisotropy factor of the
tissues was considered as g ¼ 0.9, and the refractive index was
kept as n ¼ 1.37. The first detector was placed at 0.1-cm dis-
tance from the irradiating laser source, and the consecutive next
detectors were placed at 0.2-cm distance apart from one another
in a straight line, as shown in Fig. 1. The tissue layers were sur-
rounded with air on both sides and had the optical properties as
described in Table 2. A schematic diagram of source and detec-
tor placement is shown in Fig. 1.

Simulation data for a total of 10 biological tissues are
considered in this study. The MC simulation was carried
with one million photons, and the output of the simulation
provided the reflectance values at these detectors. The study
also utilized the NIRFAST package29 to obtain the diffusion
model solution.

3.1 Choice of Lambert-W Branch

The Lambert-W function is defined as the multivalued inverse of
the function WðxÞeWðxÞ ¼ x. This function is also known as the
omega function or the product log function. Wð1Þ ¼ 0.56714 is
the omega constant and can be considered a “golden ratio” of
exponents. The Lambert-W function has many applications in
pure and applied mathematics.35 Since it is a multivalued func-
tion, it has many branches on real and complex planes. The zer-
oth branch, also called the principal branch, is the special branch
as it can contain the whole of the positive real axis in its range.
The detailed description of the branches and applications of the
Lambert-W function is beyond the scope of this study; the
detailed explanation can be found in Ref. 35. Note that in
many physical applications, including modeling of kilovoltage
x-ray beam attenuation,16 only the principal branch was utilized.
For completeness, we compared the zeroth, first, and second
branch modeling against the MC model and investigated the
best fit within these branches.

3.2 Validation of Generalized Beer–Lambert Law

The proposed study represents a GBLL to model the absorption
in NIRS. These numerical experiments validate the proposed
Beer–Lambert model by comparing it with the traditional
MC15 and NIRFAST31 simulation models. Beyond the 1-cm
source–detector separation, the proposed model provides an
accurate model for describing NIR light propagation in thick
tissues. However, this study observes that the proposed Beer–
Lambert model does not match well for the nearest tissues
where the source–detector distance <1 cm, which is due to
the dominating Mie scattering events occurring at the smaller
thickness.37

As discussed earlier, there are two geometries that are typ-
ically used in NIR spectroscopic experiments, one is the infinite
turbid medium geometry and other is the semi-infinite geometry.
We also included these two models that are present in the
literature38 in our validation studies. Note that as these infinite
and semi-infinite geometries are approximations to the tissue
geometries; the obtained OD values are normalized to have

Fig. 1 The placement of detectors as kept in numerical experiments
carried out for MC simulations. I0 is the laser source and I1; I2; I3 are
the detectors.

Table 2 Optical properties of various biological soft tissues.

Tissue type Wavelength (nm) μa (cm−1) μ 0
s (cm−1)

Arm 750 0.024 7.96

Breast 750 0.05 8.84

Synovial membrane
(healthy)

685 0.15 5

Piglet head 758 0.1457 8.94

Scalp and skull 630 0.19 7.8

Calf muscle 800 0.17 9.4

Gray matter 630 0.2 9

Skin 750 0 to 0.5 13

Muscle 630 0 to 0.5 7

Rat muscle 980 1.8 2.8
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the same initial value as with MC model in all results presented
in this work.

3.3 Biological Tissues Considered in this Work

The optical characteristics of the soft tissues, i.e., the absorption
coefficient and the scattering coefficient, are the important
parameters for the study. We have validated the proposed mod-
el’s robustness for various biological tissues. The optical proper-
ties of the tissues that are utilized in the investigations performed
are listed in Table 2.14,21,39–46

4 Results
Initially, we compare the proposed Beer–Lambert model with
the simulated MC reflectance data. The purpose of the study
is to validate it for biological tissues. Hence for a general soft
tissue, we have chosen the absorption coefficient as 0.1 cm−1

and the scattering coefficient as 10 cm−1. The proposed gener-
alized Beer–Lambert model is compared to existing MBLL and
the MC model to observe the accuracy of the proposed model.

4.1 Validation of Proposed Model for Biological
Tissues

We validate the proposed model by plotting the absorption val-
ues versus source–detector distance and comparing them with
the previously established models. The results for a general bio-
logical tissue with the given optical properties are shown in
Figs. 2 and 3. For the nearest detectors (<1 cm source detector
distance), Fig. 2(a) shows that the validation does not hold well.
However, beyond the 1-cm distance, both the plots are close;
Fig. 2(b) implies that the proposed model fits well at relevant
distances from source location. The same validation is also per-
formed with the NIRFAST modulation for an in-built simple
circular geometry (which is different than the geometry used
for generating Fig. 2). Figure 3 shows the validation of the pro-
posed model compared with the DE-based numerical model data
for the distance >1 cm.

At smaller source–detector separations [<1 cm, refer to
Fig. 2(a)], the model does not hold well due to the presence
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Fig. 2 Comparison of proposed generalized Beer–Lambert’s model against MC simulation for source–
detector distances (a) <1 cm and (b) >1 cm.
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of Mie scattering events. The first truthful point, which gives
correct OD value, is beyond1 cm.

The Lambert-W function was plotted for the various branches
of W (zeroth, first, and second branch) against the MC model in
Fig. 4. The zeroth branch makes the obvious choice, as the first
and second branches are far away from the MC data.

To better validate our proposed model, three types of human
tissues were considered: gray matter, scalp and skull, and breast
tissue. Figures 5 and 6 shows the absorption value plots for these

three types of the tissues and for the each of the models dis-
cussed here, in semi-infinite and infinite geometry, respectively.
It is clear from these two figures that the proposed model val-
idates well with the MC data compared with MBLL, which is
existent in the literature.

The same study is also performed for the animal tissues. The
optical properties for the animal tissues are listed in Table 2.
Figure 7 shows the absorption value plots for rat muscle and
piglet head, in semi-infinite and infinite geometry, respectively.
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Fig. 5 Proposed generalized Beer–Lambert model, MC simulation, and MBLL plots of source–detector
distance versus OD for semi-infinite turbid medium [Eq. (8)] for human tissues: (a) gray matter, (b) scalp
and skull, and (c) breast.
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The observed trend is similar to human tissues, thus validating
that the proposed generalized Beer–Lambert model holds well
for both human and animal tissue types.

The most prominent application of NIRS is to study the
human brain function.47,48 Keeping this in mind, we validated
our model for an inhomogeneous tissue model for human
brain. We prepared a tissue model with four layers of scalp
and skull, gray matter, CSF, and white matter. The layers widths
were kept as 1, 1, 0.5, and 0.5 cm, respectively. The results are
shown in Fig. 8(a). The optical properties of layers are men-
tioned in Table 340,41 The MC simulation output closely matches

with the proposed model. More importantly, even in low-
scattering tissue cases49 like synovial membrane as shown in
Fig. 8(b), the proposed model closely follows the MC results,
implying that the proposed model can be used even in low-
scattering tissue cases.

4.2 Validation for Nondiffusive Tissue

One of the major approximation for diffusion model to be valid
is μa ≪ μ 0

s. Table 2 lists the optical properties of the various bio-
logical tissues. It must be observed that most biological tissues
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distance versus OD for (a) semi-infinite turbid medium, rat muscle; (b) semi-infinite turbid medium, piglet
head; (c) infinite turbid medium, rat muscle; and (d) infinite turbid medium, piglet head.
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come under the diffusion model approximation in NIR window.
The aim of this investigation is to show that the proposed model
is valid where the photon diffusion theory is valid. However, to
show that the proposed model also works in the conditions
where the photon diffusion model does not, we need to look
at a tissue where μa ≪ μ 0

s is not true. The rat muscle tissues
have this optical property at 980-mm wavelength,45 as listed
in Table 2. The study solved the diffusion model (NIRFAST)
as well as the MC and the proposed model for rat muscle tissue.
The comparisons, shown in Fig. 9, make it explicit that the pro-
posed model is valid where the photon diffusion model fails.

4.3 Parameters of Proposed Model: μ0 and η

The proposed generalized Beer–Lambert model contains two
parameters μ0 and η. Our study observes that the parameter
μ0 has a direct relationship with the effective absorption coef-
ficient, i.e., with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3μaμ 0
sÞ

p
. We found that μ0 is proportional to

this value and increases with the same slope. Table 4 lists the
comparison of these parameters. It is also observed that η con-
stantly decreases with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3μaμ 0
sÞ

p
, i.e., they are in inverse pro-

portion. We plotted two curves μ0 versus
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3μaμ 0

sÞ
p

and η versusffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3μaμ 0
sÞ

p
to justify the relation (Fig. 10), asserting that the pro-

posed model is in close agreement with the known literature.
The future work includes a detailed investigation of the param-
eters η and μ0 and their relation with the tissue optical properties.

5 Discussion
This study proposed a generalized Beer–Lambert model for
light propagation in thick tissues, using the Lambert-W func-
tion. The experiments conducted here showed that the proposed
model accurately describes the photon attenuation in biological
tissues for source–detector distances >1 cm. In this work, both
human and animal tissue types were considered to demonstrate
the versatility of the model. Furthermore, we also considered
inhomogeneous and low-scattering tissues to assert that the pro-
posed model has universal applicability across tissue types.
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which case the diffusion model is not valid.

Table 3 Optical properties of different layers of the inhomogeneous
tissue at 630 nm.

Tissue type Layer depth (cm) μa (cm−1) μ 0
s (cm−1)

Scalp and skull 1 0.19 7.8

Gray matter 1 0.2 9

CSF 0.5 0.04 0.09

White matter 0.5 0.8 40.9

Table 4 List of the optical parameters of various soft biological tissues. μ0 and η are the parameters discussed in the proposed model [Eq. (16)].
The list clearly shows that μ0 and η has a direct relationship with

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3μaμ 0
sÞ

p
for both human tissues and animal tissues.

Tissue type Wavelength μa (cm−1) μ 0
s (cm−1) μ0 η

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3μaμ 0
sÞ

p
Arm 750 0.024 7.96 0.5041 1.1636 0.7570

Breast 750 0.05 8.84 0.5649 1.0132 1.1082

Synovial membrane 685 0.15 5 0.6147 0.8306 1.500

Piglet head 758 0.1457 8.94 0.6689 0.7029 1.9768

Scalp and skull 630 0.19 7.8 0.6957 0.6080 2.1086

Calf muscle 800 0.17 9.4 0.7020 0.6036 2.1895

Gray matter 630 0.2 9 0.7069 0.5928 2.3238

Skin 750 0 to 0.5 13 0.7371 0.5135 2.7928

Muscle 630 0 to 0.5 7 0.6853 0.6410 2.0494

Rat muscle 980 1.8 2.8 0.7310 0.4401 3.8884
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The accurate model for light propagation in biological tissues
uses RTE, with its equivalent statistical model being the MC
simulation. However, these models are computationally expen-
sive. Therefore, the focus of this study was on developing a uni-
versal model that overcomes the limitation of existing models.
The proposed Lambert-W function-based Beer–Lambert model
closely models the photon attenuation in biological tissues, in
the NIR spectral range, where multiple scattering and even
low-scattering tissue cases were incorporated. The accuracy
of the proposed generalized Beer–Lambert model is very prom-
ising compared to MBLL, which uses DPF to model the light
propagation. DPF depends on the optical properties of the tissue.
DPF also changes initially with source–detector distance and
then becomes stable. This makes the standard MBLL analysis
produce inaccurate results.10 Moreover, the proposed model pro-
vides parameterization for modeling the NIR light propagation
in biological tissue above 1 cm thickness. The promising results
may motivate future development in understanding the role of
parameterization that is provided in this work (μ0 and η), as they
have been proposed in the kilovoltage x-ray beams.16

The results presented in this work indicated that the proposed
model may not fit well at very small distances between source
and detectors (less than 1 cm). This is mainly attributed to, at
smaller source detector separations, scattering following Mie
theory calculations and is a more complicated function of μs,
with enhanced sensitivity of elastic scatter measurements at
smaller separations.37 Disagreement in reflectance values
between the experimental and theoretical models at small
source–detector separations were also found in the past in a dif-
fuse light propagation study.37,50

The previous semi-infinite geometry model used by Fantini
et al.,21 solved the DE and used the DPF scheme. Our study
compared the results with these models. It was found that the
MC data, which is considered to be a gold standard, deviated
substantially with the MBLL model. However, the proposed
model overcame this limitation and matched well with the
MC data. We also validated our model for rat muscle tissue

(Fig. 9), where DE is not valid due to μs being extremely
low (i.e., μa ≪ μ 0

s not true).
The correlation of the optical absorption coefficient and scat-

tering coefficient with μ0 and ηwas also considered in this study.
The developed model parameters follow a linear trend with the
effective absorption coefficient

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið3μaμ 0
sÞ

p
(Fig. 10). The future

scope of the study is to establish the μ0 and η more accurately
and develop an inverse model to accurately determine these in
phantom as well as patient cases.

For fair comparison, the average computational time for
the proposed model for a general biological tissue(with μa ¼
0.1 cm−1 and μs ¼ 10 cm−1) is 3.3 s as compared to MC sim-
ulation taking 54 s on a Windows workstation with Intel
Quadcore processor (2.4 GHz) having 8 GB memory.

6 Conclusion
The generalized Beer–Lambert model proposed in this study
describes the light propagation in thick biological tissues.
The developed model has a distinct advantage of its universal
applicability on par with the MC model for tissue thicknesses
beyond 1 cm. Applications of the proposed model in NIRS
include brain and breast imaging. The advantage of using
Lambert-W function-based modeling is that it is less computa-
tionally expensive, making it very appealing in both dynamic as
well as video-rate NIRS studies.
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