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Abstract. Accurate segmentation of the retinal microvasculature is a critical step in the quantitative analysis of
the retinal circulation, which can be an important marker in evaluating the severity of retinal diseases. As manual
segmentation remains the gold standard for segmentation of optical coherence tomography angiography (OCT-
A) images, we present a method for automating the segmentation of OCT-A images using deep neural networks
(DNNs). Eighty OCT-A images of the foveal region in 12 eyes from 6 healthy volunteers were acquired using a
prototype OCT-A system and subsequently manually segmented. The automated segmentation of the blood
vessels in the OCT-A images was then performed by classifying each pixel into vessel or nonvessel class
using deep convolutional neural networks. When the automated results were compared against the manual
segmentation results, a maximum mean accuracy of 0.83 was obtained. When the automated results were com-
pared with inter and intrarater accuracies, the automated results were shown to be comparable to the human
raters suggesting that segmentation using DNNs is comparable to a second manual rater. As manually seg-
menting the retinal microvasculature is a tedious task, having a reliable automated output such as automated
segmentation by DNNs, is an important step in creating an automated output. © 2016 Society of Photo-Optical

Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.21.7.075008]
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1 Introduction
The human retinal circulation is composed of complex capillary
networks that are responsible for satisfying the high metabolic
requirements of the multiple neuronal populations within the
retina.1 Retinal vascular diseases, such as diabetic retinopathy
and vascular occlusions, contribute significantly to the burden
of visual impairment worldwide.2 Fluorescein angiography
(FA) has been considered the gold standard in the evaluation
and diagnosis of retinal vascular diseases. Despite its wide-
spread use, this technique is limited by the background choroi-
dal flush from resolving the fine structural details of the multiple
layers of retinal capillaries.3 In addition, FA requires the admin-
istration of intravenous contrast dye, which carries a small risk
of significant adverse events.4 Optical coherence tomography
angiography (OCT-A) is a new imaging technology that allows
noninvasive, dye-free visualization of the retinal circulation.5

We have implemented a speckle-variance technique for OCT-
A as a noninvasive imaging modality that uses the change in
the speckle pattern due to red blood cell movement in sequen-
tially acquired OCT images; the corresponding intensity vari-
ance in the structural images is used to identify the retinal
microvasculature. Using OCT-A, we have been able to show
comparable quantitative and qualitative characteristics of the
peripapillary,6–8 foveal,9 and perifoveal10 images to cadaveric
histological representation.

Macular capillary density is correlated to retinal thickness
and visual functioning in patients with diabetic retinopathy.11

Hence, accurate serial quantification of the retinal microcircu-
lation is a useful marker in evaluating the severity of retinal vas-
cular diseases. Following OCT-A image acquisition, accurate
segmentation of the retinal microvasculature is a critical step
in the quantitative analysis of the retinal circulation. Retinal ves-
sel segmentation has been demonstrated in multiple medical im-
aging modalities12,13 and is well documented in the literature.
However, as the vasculature detail and appearance are different
for each modality, optimal segmentation approaches may differ
between modalities. For vessel segmentation in OCT-A images,
only a limited body of work has been conducted.

Automated approaches of segmenting retinal vessels using
OCT-A data are becoming more prevalent, yet manual segmen-
tation remains the gold standard. Manual segmentation of the
retinal blood vessels in OCT angiography images is a time-
consuming and tedious task, which requires training. Reliable
automated segmentation of these vessels is paramount for auto-
mated microvasculature quantification. The simplest automated
approach, adaptive thresholding, has been used14 but is limited
in its sensitivity to the selection of a suitable threshold as well as
its insensitivity to the shape and morphology of the microvas-
culature. One group has skeletonized the OCT-A images of
retinal vessels in order to obtain retinal vasculature perfusion
density maps15 but this approach is still insensitive to the various
widths of the vessels. Lastly, another group implemented
automated blood vessel segmentation using a hybrid Hessian/
intensity-based method while imaging wound healing in a*Address all correspondence to: Pavle Prentašić, E-mail: pavle.prentasic@
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mouse ear (pinna) with OCT-A.16 Although an accuracy of 0.94
was obtained when comparing the automated result to manual
segmentations of human retinal fundus images, validation of the
technique in human OCT-A retinal images still needs to be done.

This paper presents a new method for automated segmenta-
tion of blood vessels in retinal OCT-A images using deep neural
networks (DNN). DNNs have shown promising results in solv-
ing a variety of problems, such as object recognition in
images,17,18 speech recognition,19 semantic segmentation of
images,20,21 handwritten character classification recognition,22

and text analysis.23

The main contribution of this paper is to demonstrate the
high effectiveness of the deep learning approach to the segmen-
tation of blood vessels in OCT-A images. The automated seg-
mentation results on the images acquired from a clinical
prototype OCT-A system were compared with the manual seg-
mentations from two separate trained raters and discussed.

2 Methods

2.1 Ethics Statement

All subject recruitment and imaging took place at the Eye Care
Centre of Vancouver General Hospital. The project protocol was
approved by the Research Ethics Boards at the University of
British Columbia and Vancouver General Hospital, and the
experiment was performed in accordance with the tenets of
the Declaration of Helsinki. Written informed consent was
obtained by all subjects.

2.2 Speckle Variance Optical Coherence
Tomography Imaging

Speckle variance OCT images of the foveal region in 12 eyes
from 6 healthy volunteers aged 36.8� 7.1 years were acquired
using a graphics processing unit-accelerated OCT-A clinical
prototype.24 In total, 80 images were acquired. Briefly, the
OCT system uses a 1060-nm swept source (Axsun Inc.) with
100-kHz A-scan rate and a full-width half-maximum bandwidth
of 61.5 nm, which corresponds to a coherence length of ∼6 μm
in tissue. For the speckle variance calculation, three repeat
acquisitions were obtained at each B-scan location. The scan
area was sampled in a 300 × 300ð×3Þ grid with a ∼1 × 1 mm
field of view in 3.15 s. Images were acquired either directly
superiorly, nasally, inferiorly, or temporally from the foveal
avascular zone. Processing of the OCT intensity image data
and en face visualization of the retinal microvasculature was per-
formed in real time using our open source code.25,26

2.3 Manual Segmentation

For comparison, two raters segmented OCT-A images using a
Wacom Intuos 4 tablet and GNU image manipulation program.
For the cross-validation and training, Rater A segmented all 80
OCT-A images. For the repeatability analysis, 10 images were
used and segmented by both rater A and rater B. Rater A seg-
mented each image twice for intrarater agreement, while Rater B
segmented each image once for interrater agreement.

2.4 Deep Neural Network Architecture

The automated segmentation of the blood vessels in the OCT-A
images was performed by classifying each pixel into either the
vessel or the nonvessel class using deep convolutional neural

networks. Convolutional and max pooling layers are used as
hierarchical feature extractors, which map raw pixel intensities
into a feature vector, which is then classified using fully con-
nected layers.

The convolutional layers in our algorithm are made of a
sequence of square filters, which perform a two-dimensional
convolution with the input image. To calculate the output of
each map, convolutional responses are summed and passed
through a nonlinear activation function. The nonlinear activation
function used in this paper is a rectifying linear unit.

Max pooling layers generate their output by taking the maxi-
mum activation over nonoverlapping square regions. These
layers do not have adjustable parameters and their size is
fixed. By taking the maximum value of the activation function,
the most prominent features are selected from the input image.

After six stages of varied convolutional and max pooling
layers, a dropout layer was inserted, which can prevent network
over-fitting and provide a way of combining an exponentially
increasing number of different neural networks in an efficient
manner.27 Then, two fully connected layers are used to classify
the feature vector generated by the previous layers. The final
fully connected layer contains two neurons where one neuron
represents the vessel and other the nonvessel class. The network
architecture used in this paper is very similar to the network
architecture first used in Ref. 20. An overview is presented
in Table 1 and graphically in Fig. 1.

2.5 Network Training Methods

To train our network, original OCT-A images and the corre-
sponding manual segmentations were used as inputs. Each train-
ing example consists of a 61 × 61 pixel square window around
the training pixel. Missing pixels in windows at the image bor-
der were set to zero. To have a balanced training set, an equal
number of vessel and nonvessel pixels were extracted from each
image. If the number of vessel pixels was larger than the number
of nonvessel pixels in an image, then all nonvessel pixels were
selected for the training set and an equal number of vessel
pixels were randomly selected from the pool of vessel pixels.
Similarly, if the number of nonvessel pixels was larger than

Table 1 Network layers architecture.

Layer Type Maps and size Kernel size

0 Input 1 map of 61 × 61 neurons

1 Convolutional 32 maps of 56 × 56 neurons 6 × 6

2 Max pooling 32 maps of 28 × 28 neurons 2 × 2

3 Convolutional 32 maps of 24 × 24 neurons 5 × 5

4 Max pooling 32 maps of 12 × 12 neurons 2 × 2

5 Convolutional 32 maps of 9 × 9 neurons 4 × 4

6 Max pooling 32 maps of 5 × 5 neurons 2 × 2

7 Dropout

8 Fully connected 150 neurons

9 Fully connected 2 neurons
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the number of vessel pixels in an image, then all vessel pixels
were selected for the training set and an equal number of non-
vessel pixels were randomly selected from the pool of nonvessel
pixels.

2.6 Network Segmentation Methods

The trained network was then used to segment the original OCT-
A images. First, a square window of the same size used for the
training purposes was extracted around each pixel of the test
images. A forward pass using all test image pixels was per-
formed using the trained network, and each pixel was assigned
a grayscale value, with higher values representing higher con-
fidence of the pixel being a vessel pixel. These pixel values were
aggregated into the output grayscale images, and median filter-
ing with a small 3 × 3 window was performed in order to
decrease the noise level in the image.

2.7 Cross-Validation Methods

Three-fold cross-validation on all images manually segmented
by Rater A was performed. All 80 original images were ran-
domly divided into three sets. Images from two of the sets
were used to train the network, and images from the remaining
set were used to test the network. This procedure was repeated
three times with a different test set each time. Each set of the
cross-validation was evaluated on a separate computer in
order to decrease the total training and testing time. Each com-
puter had a recent generation NVIDIA graphics card, which
decreased computation time. The Caffe deep learning toolkit28

was used to efficiently use the processing power of the graphics
card for computation of convolutional neural network parame-
ters. Using parallel processing, all three sets were used to
train the proposed neural network in approximately 30 h.
Segmentation of a single image using the trained network took
∼2 min.

3 Results

3.1 Performance Evaluation

The segmentation performance was evaluated by pixel-wise
comparison of the manually segmented images and the thresh-
olded binary output of the neural network using varying thresh-
olds. The number of true positives (TP), false positives (FP),

false negatives (FN), and true negatives (TN) were calculated
using pixel-wise comparison between a reference manual seg-
mentation and a target, which was either another manual seg-
mentation, or the output of our automated method. In our
context, a pixel is considered as TP if it is marked as a
blood vessel in both the reference manual segmentation and
in the target. A pixel is considered as FN if it is marked as
blood vessel in the manual segmentation but missed by the tar-
get. A pixel is considered as FP if it is marked as vessel by our
method but it is not marked as blood vessel in the target. A pixel
is considered as TN if it is not marked as blood vessel in both
the manual segmentation and in the target. Using the TP, FP,
FN, and TN numbers we can calculate the accuracy: ðTPþ TNÞ∕
ðTPþ TNþ FPþ FNÞ, sensitivity: TP∕ðTPþ FNÞ, specificity:
TN∕ðTNþ FPÞ and positive predictive value (PPV): TP∕ðTPþ
FPÞ of the segmentation.

Using the PPV and sensitivity we can calculate the F1 mea-
sure using Eq. (1).

EQ-TARGET;temp:intralink-;e001;326;554F1 ¼
2 · Sensitivity · PPV
Sensitivityþ PPV

: (1)

All of these measures can be calculated on individual images
but can also be calculated for the whole dataset. In Fig. 2, the
dotted blue line shows the accuracy for all pixels in the dataset
against the threshold value used to binarize the output of the
network. The accuracy of blood vessel detection increases
from the threshold value at 0, peaks at 0.83 with threshold
value of 0.78, and then begins to decline. It is important to
note that similar results are obtained in a wide range of thresh-
olds, which indicates that the performance is not sensitive to the
threshold chosen.

In Fig. 3, the accuracy for each image was calculated and
averaged over all images. One standard deviation below the
mean values is marked with a green dotted line and one standard
deviation above the mean values is marked with a blue dotted
line. Qualitatively, the deviation of accuracies is reasonably
small for different thresholds, with the maximummean accuracy
of 0.83� 0.02 at the threshold value of 0.76, signifying that the
performance of the method is consistent over the whole dataset.
The accuracy of the deeper capillary network [inner nuclear
layer (INL) to outer plexiform layer] is 0.8247 while the accu-
racy of the superficial capillary networks (inner limiting mem-
brane to INL) is 0.8389; the lower accuracy of the deeper layers

Fig. 1 Graphical representation of the network structure. Input image is a 61 × 61 patch cut at each
image point. Two output neurons represent the probabilities of blood vessels and background at the
central pixel in the input image.
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is likely due to projection artifact from the superficial vascular
layers.

Using the sensitivity and specificity measurements over the
range of thresholds we can plot the receiver operator character-
istic (ROC) for our method, as shown in Fig. 4 with blue dots.
The sensitivity and specificity were calculated using all pixels
from the dataset.

In Fig. 5, the F1 measure was calculated for the machine out-
put using all pixels from the dataset and shown with blue dots.

3.2 Intrarater and Interrater Agreement

As described in Sec. 2.3 among the 80 images segmented by
Rater A, 10 images were additionally segmented a second
time by Rater A, and also by Rater B for assessing the intra-
and interrater agreement. For convenience, we used the accuracy
measures discussed above and the original segmentation by
Rater A (Rater A1) as the ground-truth in order to assess its
agreement with (1) the repeat segmentation of Rater A (Rater
A2), (2) Rater B, and (3) the network. The machine segmenta-
tion accuracy results of (3) were obtained as part of the threefold
validation in Sec. 3.1. The results are shown in Fig. 2 in dotted
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Fig. 2 Accuracy of the segmentation using the DNN. The blue dotted
line is the accuracy for all pixels in the dataset and the red line is the
accuracy using only the images used for assessing the intrarater and
interrater accuracies. The black and cyan lines are the corresponding,
intrarater and interrater accuracies, respectively. As the accuracy for
several thresholds are above that of the intrarater and interrater accu-
racies, we can say that the performance is not sensitive to the chosen
threshold.
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Fig. 3 Mean accuracy of the segmentation using the DNN. The red
line is the mean accuracy of the segmentation for all possible thresh-
old values, and the blue dotted line and green dashed line are one
standard deviation above and below the mean accuracy, respectively.
The small deviation of accuracies signifies a consistent performance
of the whole dataset.
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Fig. 4 ROC curves of the segmentation using the DNN. The blue dot-
ted line is the ROC curve for all pixels in the dataset and the red line is
the ROC curve for the images used for assessing the intrarater and
interrater accuracies. The black cross and cyan dots are the corre-
sponding, intrarater and interrater points, respectively.
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Fig. 5 F 1 measure of the segmentation using the DNN. The blue dot-
ted line is the F 1 measure for all pixels in the dataset and the red line is
the F 1 measure of the images used for assessing the intrarater and
interrater accuracies. The straight black and dotted cyan lines are the
corresponding, intrarater and interrater F 1 measures, respectively.
The results from the automated DNN method are better than the
manual segmentation results for a large range of thresholds, again
showing the performance is not sensitive to the threshold chosen.
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cyan, solid black, and solid red lines, respectively. The intra- and
interrater accuracies for the manual raters are plotted as lines
because they are independent of the threshold used for the
machine based segmentation. From the Fig. 2, the intrarater,
interrater, and machine-rater accuracies are comparable, sug-
gesting that the automated segmentation is comparable to that
of a human rater. As it was expected, the accuracy of the
repeated segmentation is better than the accuracy of the second
rater but the difference is small.

In Fig. 4, the ROC curve of the automated segmentation is
compared with Rater A1 (solid red line). In the same figure, the
cyan star represents the sensitivity and specificity pair for Rater
A2 compared with Rater A1 and the black cross represents the
sensitivity and specificity pair for Rater B compared with Rater
A1. The ROC curve was created by plotting the sensitivity
against the false-positive rate (1-specificity) at various thresh-
olds to depict relative trade-offs between true positives and
false positives. A completely random result would be repre-
sented by a diagonal line. As seen in Fig. 4, the results from
the automated DNN method are better than the manual segmen-
tation results and well above the random result.

In Fig. 5, we can see the F1 measure curve for the machine
output marked with solid red curve, and the F1 measures for
Rater A2 (dotted straight cyan line) and for Rater B (solid
straight black line). The F1 measure depicts the trade-off
between precision and recall with each variable weighted
equally. As such a higher F1-measure has a better balance
between precision and recall. As seen in Fig. 5, there is a
wide range of thresholds in which the balance between precision
and recall is higher than the manual raters.

3.3 Capillary Density

Capillary density (CD) is a clinical measure of quantifying reti-
nal capillaries present in the OCT-A images. After segmentation
of the vessels, CD can be calculated as the number of pixels in
the segmented areas. Using the same 10 images from Sec. 2.3,
we obtained the CD values from the segmentations by Rater A1,
Rater A2, Rater B, and the network, and calculated the mean
capillary density in order to evaluate the intrarater, interrater,
and machine-to-rater repeatability of the CD measures. The
result is presented in Table 2.

A paired-samples t-test was conducted to compare the capil-
lary density of manual and automated segmentations. There was
no significant difference in the scores for either of the manual
raters or the machine.

4 Discussion
The problem of blood vessel segmentation in OCT-A images is
challenging due to the low contrast and high noise levels in
OCT-A images. We have presented a deep convolutional neural
network-based segmentation method and validation using 80
foveal OCT-A images. In the cross-validation in Sec. 3.1, the
accuracy percentage of the trained network fell in range of
80% to 83%. From the results, we conclude that the machine
based segmentation was comparable to the manual segmentation
by a human rater.

In the intra- and interrater comparison in Sec. 3.2, we found
similar degrees of agreement for the repeated segmentations by a
single rater, and segmentations from two different raters, show-
ing substantial intra- and interrater variability in the manual

Table 2 Mean capillary density comparison.

Mean
(N ¼ 10)

Standard
deviation

Standard
error mean p-value

Rater A1 0.2710 0.0399 0.0133

Rater A2 0.2530 0.0350 0.0117 0.1758

Rater B 0.2583 0.0723 0.0241 0.6187

Machine
(threshold ¼ 0.70)

0.2718 0.0342 0.0012 0.9144

Fig. 6 Examples of OCT-A retinal images acquired with our system
(top row), manual segmentations of the vessels (second row), original
images with manual segmentations superimposed (third row), and
outputs of the proposed DNN method (bottom row). Images in the
left column represent an example of a typical dataset and images
in the right column represent an example of a low quality dataset.
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segmentation. This suggests that the trained network may per-
form as well as a new human rater. Given the amount of time
(∼20 to 25 min) required for a human rater to perform the seg-
mentation manually versus 2 min for the automated method, this
represents a tool that could be useful in the clinical environment
to save valuable human time and present results to the clinician
in a shorter interval.

In addition to comparison with manual segmentation, the val-
idity and merit of automated segmentation of medical images
can be assessed by deriving clinical parameters such as capillary
density. This approach is particularly appropriate if the quality
of the derived parameters can be measured, e.g., by the corre-
lation to other relevant clinical features, and if the quality of the
manual segmentation ground truth is not reliable. In Sec. 3.3,
capillary density was calculated for the manual and machine
segmentations. A paired-samples t-test was conducted to com-
pare the capillary density of manual and automated segmenta-
tions. There was no significant difference in the scores for either
of the manual raters or the machine.

As the performance of a machine learning based approach is
closely linked to the quality of the training data, using high qual-
ity data is important. However, the performance of a human
rater, the ground-truth for training the network, is limited due
to the difficulty in delineating the capillaries of some data
sets. This was mainly due to poor contrast, vertical motion arti-
facts, and high noise levels. In Fig. 6, we can see an example of a
poor dataset, with an accuracy of 77.12% and an example of a
typical dataset with accuracy of 81.16%. We have observed per-
formance variability in the vessel thickness due to the field of
view and have chosen to train each field of view separately to
take this into account. The dataset in this paper only contains
images from one field of view (1 × 1 mm). The automated algo-
rithm does segment the larger vessels (arterioles and venuoles)
with a higher degree of certainty than the smaller vessels
(capillaries).

This problem could be potentially mitigated by producing
ground-truth data that is measurably better than data from a sin-
gle expert by using images segmented by two or more trained
volunteers as the input to the learning procedure. In this case,
multiple segmentations of each image would be combined to
select regions that are high in agreement by the raters, and
the combined image would be then used for the learning pro-
cedure. A drawback to this approach would be the human
labor cost of several trained raters segmenting a sufficiently
large number of images for training purposes. Also, increasing
the enface image quality in the acquisition stage would increase
the quality of the manual rater accuracy and repeatability. This
in turn can reduce the noise level in the ground truth data and
make this method more robust.

5 Conclusion
Segmentation of the retinal microvasculature is an important
step in quantification of retinal images for clinical purposes.
For OCT-A, a new method for retinal vasculature visualization,
automated segmentation of the retinal vasculature remains a rel-
atively unexplored area. Through comparisons of results from
the DNN method and manual raters, the accuracy of our method
is found to be comparable to a manual rater. For clinical appli-
cations, this is an important step in creating an automated seg-
mentation usable for clinical analysis.
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Prentašić et al.: Segmentation of the foveal microvasculature using deep learning networks

http://dx.doi.org/10.1109/TPAMI.2012.231
http://dx.doi.org/10.1109/ICDAR.2011.229
http://dx.doi.org/10.1109/ICDAR.2011.229
http://dx.doi.org/10.1136/bjophthalmol-2014-306010
http://dx.doi.org/10.1117/1.JBO.19.2.026001
http://borg.ensc.sfu. ca/research/svoct-gpu-code.html
http://borg.ensc.sfu. ca/research/svoct-gpu-code.html
http://borg.ensc.sfu. ca/research/svoct-gpu-code.html
http://borg.ensc.sfu. ca/research/svoct-gpu-code.html
http://borg.ensc.sfu. ca/research/svoct-gpu-code.html

