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Abstract. The learning curve and interobserver variance of attenuation coefficient (μOCT) determination from
optical coherence tomography (OCT) images were quantified. The μOCT of normal and diseased vulvar tissues
was determined at five time points by three novice students and three OCT experts who reached consensus for
reference. Students received feedback between time points. Eventually, variance in μOCT was smaller in images
of diseased tissue than in images of normal vulvar tissue. The difference between the consensus and student
μOCT values was larger for smaller values of μOCT. We conclude that routine μOCT determination for tissue clas-
sification does not require extensive training.© 2015 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JBO.20

.12.121313]
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1 Introduction
Optical coherence tomography (OCT) is the optical equivalent
of ultrasound, using light instead of sound to produce cross-
sectional images of tissue. Resolutions up to 1 to 2 μm can be
achieved, which are 10 to 25 times higher than high-frequency
ultrasound and approach that of microscopy, thus allowing tis-
sue differentiation based on morphology. OCT images range to
approximately 2 mm in depth: a limitation mainly due to light
scattering, which causes a decrease of OCT signal magnitude
with increasing depth. This decay of OCT signal is directly
related to the optical properties of the tissue and is quantified by
the attenuation coefficient μOCT. Several studies have shown that
the quantitative analysis of the OCT-signal attenuation allows in
vivo differentiation between dissimilar tissue types, for example,
in retinal imaging1,2 and in cardiovascular plaque differentia-
tion.3–5 In addition, in the kidney,6,7 in the upper urinary
tract,8 in the bladder,9 and in axillary lymph node imaging,10,11

quantitative analysis of the OCT-signal attenuation has shown
differences between normal tissue and cancerous tissue. In
the gynecological clinic, quantitative OCT has been shown to
be helpful in distinguishing normal vulvar tissue from vulvar
intraepithelial neoplasia (VIN).12 VIN is a premalignant lesion
that can develop into vulvar squamous cell carcinoma, which is
the fourth most common gynecological type of cancer.13 VIN is
diagnosed by punch biopsy, which is painful and may harm

cosmetic appearance. Since VIN often recurs, and biopsies
are required to determine the abnormality of the skin, some
patients are required to undergo many biopsies throughout
their lifetime. Quantitative analysis of the OCT signals may
be an alternative method to distinguish VIN from normal vulvar
skin.12 In the quantitative analysis, a mathematical model based
on Beer’s law containing the attenuation coefficient and
accounting for OCT system parameters, is fitted to the OCT sig-
nal in a user-selected region of interest (ROI). Clearly, correct
region selection is important for accurate quantification of
the OCT signal-derived μOCT. Because OCT and quantitative
attenuation analysis are increasingly used as diagnostic tools
in clinical research, information on the observer differences
and learning curves associated with this analysis is needed.

The aim of this study is to investigate the learning curve and
the interobserver variance of quantitative OCT-imaging analysis
of suspicious lesions of the vulva. Therefore, the μOCT of normal
and suspicious vulvar lesions (including VIN lesions) was deter-
mined from OCT images acquired earlier at five time points by
three students and by three OCT experts, who form a reference
consensus. Previous analysis12 revealed a statistically significant
difference between μOCT of healthy (2.1� 1.4 mm−1) and VIN
(6.2� 2.1 mm−1). We use the area under the curve of the
receiver operating characteristic (ROC-AUC) as the primary
metric for the learning of individual observers. In our previous
study, a ROC-AUC of 0.95 was found. The interobserver
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differences between the three students are analyzed by a linear
mixed effects model. Bland–Altman plots are used to compare
the results of the three students to the consensus.

2 Materials and Methods

2.1 Optical Coherence Tomography Imaging

Imaging of 20 suspicious vulvar lesions and normal appearing
regions in 16 consecutive patients was previously performed12

with a commercially available swept-source OCT system
(Santec Inner Vision 2000; 50-kHz A-line rate, ∼10-μm axial
resolution, ∼20-μm lateral resolution, operating at 1300 nm).
From every suspicious lesion and every normal region, five
OCT images were acquired so that 100 OCT images of normal
vulvar tissue and 100 OCT images of suspicious vulvar lesions
were available for analysis. The size of OCT B-scans is 3 mm in
the axial dimension and 15 mm in the lateral. After imaging,
a punch biopsy of the suspicious vulvar lesions was taken for
pathological evaluation. Histopathology was used as the refer-
ence standard. The study was approved by the Medical Ethical
Committee of our institute and performed according to the
Declaration of Helsinki.

2.2 Optical Coherence Tomography Data Analysis

The OCT data were fitted with a single exponential decay model
in which the amplitude (A) and decay coefficient (μOCT þ μcal)
were the free running parameters and the offset noise (y0) was
fixed at the noise level derived from a region of the image where
no tissue was present.14,15 The term μcal accounts for attenuation
due to the OCT system itself: the confocal point spread function
and sensitivity roll-off in depth.14,15 This factor can be calibrated
from an attenuation measurement on a very weakly scattering
sample, in our case a 1000-fold dilution of Intralipid 20%.
Note that using this method, water absorption is accounted for
by μcal. In our model, μOCT is a measure for the scattering of the
tissue under study and a parameter to discriminate between nor-
mal vulvar tissue and diseased vulvar tissue. Within a cross-
sectional OCT image, the epidermal layer appears as a dark gray
band (Fig. 1). The OCT image of the tissue was straightened

before selecting the ROI. In normal vulvar tissue, the investiga-
tor selected the ROI in this epidermal homogenous layer. In
diseased vulvar tissue (with a visual suspicious lesion present),
the ROI in the epidermal layer within the lesion was selected
by the investigator. A digital record is stored for each analysis
including geometrical coordinates of the chosen ROI in the
image as well as all fit parameters and their 95% confidence
intervals. This way, the OCT analysis can be reviewed a
posteriori.

2.3 Study Design

OCT images were evaluated at five time points (T1, T2, T3, T4,
V) by three students and a consensus team consisting of three
experts [Daniel M. de Bruin (DMdB), Ronni Wessels (RW), and
Dirk J. Fabers]. Prior to each time point, all images were
renamed using nondescript random names to prevent name rec-
ognition. At T1, the expert team first excluded images with poor
quality (e.g., low signal-to-noise ratio, out-of-focus, and satura-
tion by specular reflection). Of the remaining 175 images (81
normal regions and 94 suspicious regions), consensus μOCT val-
ues were determined. Next, three medical students, with no prior
OCT experience, were introduced to this technique and taught
how to interpret OCT images and how to select the ROI and
calculate the μOCT as described above. To gain familiarity with
the OCT images and the analysis procedure, their assessment
at T1 was performed on the complete dataset of 175 OCT images.
The μOCT was subsequently determined at T2, T3, and T4 sep-
arated by 2 to 3 days by all three students and the expert consen-
sus. These assessments were performed on a 60-image, randomly
selected subset of the original dataset of the 175 images. The
expert team reviewed the dataset to include only images that
showed either clear normal or suspicious regions, after which
54 OCT images remained (22 OCT images from 13 normal
regions and 32 OCT images from 16 suspicious lesions). After
the fourth assessment, a validation (V) was performed on a
newly randomly selected 60-image subset. After expert review,
this set contained 53 OCT images (22 OCT images from 14 nor-
mal regions and 31 OCT images from 19 suspicious lesions).
Figure 2 shows the study design. The students and experts

Fig. 1 Selection of the region of interest (ROI) and determination of accompanied μOCT value are shown
in normal vulvar tissue (a) and in diseased vulvar tissue (b). The ROI is selected with green (vertical and
horizontal) lines from the epidermal layer. The average intensity versus depth is plotted in the line graphs
and is calculated from data between the vertical green lines. The region from which the signal is fitted is
depicted by the horizontal green lines.
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were blinded for tissue-type (normal or suspicious) throughout
the whole study.

2.4 Instructions and Feedback

Two experts operated as instructors: one expert in the field of
OCT in general (DMdB) and one physician experienced in
vulvar pathology and OCT analysis (RW). Initially, the students
received essential instructions from expert 1 on how to use the
analysis software. Subsequently, the entire OCT assessment
procedure was demonstrated using three randomly chosen OCT
images. When the image contained a suspicious lesion, the stu-
dents were instructed to select the “most suspicious” part of the
epidermal layer. If the OCT image was taken from normal skin
with normal appearing layered architecture, then they were told
to select and analyze the most homogenous part of the epider-
mal layer.

Between sessions, feedback was provided to the students by
one of the instructors. Feedback consisted of reviewing four ran-
domly chosen OCT images and performing analyses of these
images of the students which were stored while performing the
analysis. Based on that report, the students explained which
region they selected to perform the analysis. Then one of the
instructors presented which region he or she would select and
how the μOCT would be determined. The results on the selected
region and μOCT outcomes were compared and discussed.

2.5 Assessment of Learning: Statistical Methods

A ROC curve was constructed after each time point for each
observer (students 1, 2, 3 and the consensus team). The ROC
curve plots (1 − specificity) versus sensitivity of the discrimi-
nation between normal and diseased vulvar tissues with varying
cutoff values for μOCT. The ROC-AUC quantifies the overall
ability of the procedure to discriminate between normal and dis-
eased vulvar tissues. Its value equals the probability that a ran-
domly selected vulvar lesion will yield a higher μOCT value than
a randomly selected normal vulvar tissue. As ROC analyses
assume independent observations, only one scan per lesion, ran-
domly chosen, was included in these calculations. Monte Carlo
boot-strap sampling was performed to assess the variability due
to scan selection and to provide confidence intervals on the
ROC-AUC values.

To estimate the mean μOCT of normal and diseased tissues,
linear mixed effects models (containing both fixed effects and
random effects) were constructed and applied at each of the five
time points. When considering all values at a given time point,
variance in μOCT values can be attributed to different causes,
e.g., pathology status, variance due to the patient (e.g., caused
by different skin types), and variance due to observer-related
choices in the analysis. The models included pathology (normal
versus diseased) as a fixed cause (it cannot vary because path-
ology is the reference standard). The so-called “random

Fig. 2 Study design.

Table 1 The median [interquartile range (IQR)] ROC-AUCs for the three students and the consensus group at each time point (T1–T4) and the
validation set. Evaluation at T1 is performed on a 175-image dataset; and T2–T4 on a 54-image dataset, which was randomly renamed between
sessions. The validation set consisted of 53 new randomly drawn images.

T1 T2 T3 T4 V

Consensus 0.83 (0.77 to 0.89) 0.83 (0.76 to 0.92) 0.82 (0.75 to 0.92) 0.82 (0.75 to 0.92) 0.81 (0.76 to 0.86)

Student 1 0.60 (0.52 to 0.70) 0.84 (0.77 to 0.91) 0.81 (0.75 to 0.89) 0.88 (0.82 to 0.96) 0.90 (0.87 to 0.97)

Student 2 0.78 (0.71 to 0.85) 0.81 (0.73 to 0.88) 0.75 (0.65 to 0.83) 0.73 (0.65 to 0.81) 0.57 (0.50 to 0.64)

Student 3 0.69 (0.61 to 0.77) 0.74 (0.64 to 0.82) 0.61 (0.51 to 0.71) 0.58 (0.47 to 0.69) 0.75 (0.69 to 0.82)
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intercepts”—variable causes—are the variations between
patients and observers.

Therefore, a decrease in variance over time indicates conver-
gence of μOCT values and can be regarded as a learning effect of
the observers as a group. The ratio of the variance between
lesions compared with the variance due to all sources can be
found by computing the intraclass correlation coefficient (ICC).
High ICC implies high repeatability of the measurements. An
increase of the ICC can be indicative of the diminishing effect

of differences between observers, in other words: of learning of
the group.

Bland–Altman type plots were constructed to compare the
students’ μOCT values with those of the consensus for all five
sessions.

3 Results
For each student and the consensus, ROC-AUCs were calcu-
lated. The medians and interquartile ranges (IQRs) of the
ROC-AUCs for the three students and the consensus are pre-
sented in Table 1, Fig. 3, and Fig. 4. In Fig. 4, the solid line
represents the median values, the boxes the IQRs, and the whisk-
ers the smallest and the largest nonoutliers. Each data point out-
side the range of the whiskers is shown individually. The
consensus has a very stable discrimination with accuracy around
0.80. Student 1 attained a greater accuracy at the last session
(session 4) and the validation round (0.88 and 0.90, respec-
tively). Student 2 performed quite well already at session 1
with an ROC-AUC of 0.78 (0.71 to 0.85), while the consensus
had an ROC-AUC of 0.83 (0.77 to 0.89). Student 2 stayed at this
level, but then performed worse on the validation set. Student 3
performed better at session 2 compared with 1, but declined in
performance at sessions 3 and 4. At the validation set, however,
ROC-AUC was 0.75 (0.69 to 0.82), which was only slightly
worse than the consensus [ROC-AUC 0.81 (0.76 to 0.86)].
When looking at the validation session, students 1 and 3 per-
formed better than at session 1, indicating that μOCT determina-
tion can, in principle, be learned rapidly after a short training
session. The ability to differentiate between normal vulvar tissue
and diseased vulvar tissue is also shown in ROC curves at each

Fig. 3 Learning curves. Graphical respresentation of the area under
the curve of the receiver operating characteristic (ROC-AUC) of the
consensus and students 1 to 3 at different time points shown in
Table 1.

Fig. 4 The median [interquartile range (IQR)] ROC-AUCs for the three students and the consensus
group at each time point (T1–T4) and the validation set. Box = IQR; whisker = smallest and largest
nonoutliers. Data-points are the points outside the whiskers.
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time point. Figure 5 presents these ROC analyses for the three
students and the consensus.

The mixed effects models show that the mean
μOCT-value determined by the consensus group and three
students pooled together remained stable over the five assess-
ments for both the normal vulvar tissue samples (means ¼
3.3∕2.8∕4.1∕3.8∕3.3 mm−1) and for the diseased tissue samples
(5.5∕5.4∕6.0∕6.1∕5.9 mm−1). The μOCT-values of normal vul-
var and diseased vulvar tissues were significantly different at all
five time points (p < 0.001). The median within-lesion variance
of the three students (without the consensus group) in observed
μOCT over the T ¼ I − V assessments for normal vulvar tissue
was 4.1∕3.2∕2.8∕4.1∕3.8 mm−1; for diseased tissue, there
was a notable reduction in variance in time 3.7∕3.1∕1.2∕
1.1∕1.8 mm−1. The within-lesion ICC for normal tissue samples
for the five assessment time points was 0.25/0.21/0.19/0.14/
0.25. For the diseased tissue samples, it was slightly higher,
with the exception of the final validation assessment, 0.37/
0.34/0.44/0.46/0.18.

The difference in μOCT values between the consensus and the
students is presented using Bland–Altman plots (Fig. 6) at the
five different time points. All three students appeared better at
estimating high values and worse at estimating low values of
μOCT.

4 Discussion and Conclusion
The potential of OCT to discriminate normal from diseased tis-
sues using quantification of optical properties has been demon-
strated in a number of recent studies.6,7,9,12,16 Preferential clinical
application of this technique is during diagnostic or therapeutic
intervention, operated by the physician, providing real-time
accurate assessment of tissue status. Because the currently
used method requires operator-based choices (most importantly,
the selection of a ROI), assessment of operator-induced variance
in the tissue assessment is of great importance. The IDEAL

framework17 describes the stages through which innovative
interventional techniques normally pass upon clinical introduc-
tion: Idea (proof of concept), Development, Exploration (learn-
ing), Assessment, and Long-term study (surveillance). IDEAL
characterizes all of these stages and recommends study design
types for each. For applications other than ophthalmology and
cardiology, OCT is currently in the Development/Exploration
stage, which makes it opportune to conduct a learning study.

In this study, we define “learning” as the increased ability to
discriminate healthy from diseased tissue based on the OCT
attenuation coefficient. For this purpose, we used the area
under the ROC-AUC as the primary metric of learning, where
higher values indicate better discrimination. From the ROC
curves, we conclude that forming a consensus between experi-
enced observers results in repeatable differentiation of normal
vulvar tissue from diseased vulvar tissue based on μOCT
(ROC-AUC of ∼0.8, see Table 1). This indicates that using
expert consensus as a benchmark is indeed feasible in this
type of learning study. Student 1 performed almost at the same
level as the consensus (in assessments 2 and 4, even better). On
the contrary, student 2 showed a decline in ROC-AUC, indicat-
ing less accurate tissue classification. Student 3’s results
were constant, yet consistently below the consensus results.
Interestingly, the performance of student 3 declined during
the training period, but was again closer to the consensus in
the validation round.

Assessments at time points T2, T3, T4 were performed on a
fixed, 54-image subset of the primary dataset, where the images
were randomly renamed between each session. An image-based
“memorizing effect” may have taken place, leading to an arti-
ficial stabilization of the μOCT (because students remember
which ROI they selected previously). We expect this effect to
be more pronounced for “diseased” images where the epithelial
layers are thicker compared with normal epithelium. Thus
“memorized” selection of the ROI is easier for diseased tissues.

Fig. 5 ROC curves at each time point (T1–T4) and the validation assessment for the three students
(S1–S3) and the consensus group (C).
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On the other hand, repeated assessment of gray-scale images as
in this study may lead to “analysis fatigue” resulting in less
accurate ROI determination which would particularly influence
the smaller ROIs associated with normal tissue. Evidence of
either, which are essentially psychological effects, are not
clearly found from Table 1, Fig. 3, or Fig. 4, but can be inves-
tigated in future studies by repeated evaluation of carefully
designed layered phantoms.14

We constructed linear mixed effects models to estimate
means and variances between normal and diseased tissues.
The mean μOCT values, averaged over all observers (consensus

+ students 1 to 3), were stable over all time points for both nor-
mal and diseased tissues, which again indicates the value of con-
sensus measurements. To further quantify the learning process,
we analyzed the variance of the μOCT values of the students
alone. Of specific interest is the development from the last train-
ing session (T4) to the validation round (V) where the dataset
under analysis was changed. For normal tissue, the within-tissue
variance slightly decreased (from 4.1 to 3.8 mm−1), indicating
convergence of the assessments over all observers (students 1 to
3). Correspondingly, the within-tissue ICC increased (the pro-
portion of variance attributable to tissue variation), implying

Fig. 6 Bland–Altman plots showing the differences between the student’s (S1–S3) calculated μOCT val-
ues and those of the consensus group at each of the four time points (T1–T4). The vertical axis depicts
the difference between the μOCT values of the student and the μOCT values of the consensus group in
mm−1. On the horizontal axis, the μOCT values of the consensus group (in mm−1) are given.
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stable variance due to observer influence. On the other hand, the
within-tissue variance for diseased tissue increased (from 1.1 to
1.8 mm−1), again indicating convergence of the assessment over
all observers while ICC decreased from 0.46 to 0.18. The latter
finding implies increased variance due to observer influence
which we consider to be consistent with the decrease in the per-
formance of student 2.

Bland–Altman plots were constructed to show the difference
between each student’s assessment and consensus, versus con-
sensus. For all students, the difference was higher for smaller
values of the attenuation coefficient. Normal tissue samples gen-
erally showed smaller values of μOCT than diseased samples;
moreover, the ROI selection of normal tissue is complicated
by the generally thinner epithelial layer. In time, student 1
showed improvement in assessing lower (normal) attenuation
coefficients, resulting in overall improvement in discrimination
as expressed by increased ROC-AUC. The performance of stu-
dent 2 to assess lower (normal) values of μOCT decreased in time.
Interestingly, the ability of student 3 to assess high values of the
attenuation coefficient (diseased tissue) slightly increased dur-
ing the training rounds, whereas the ability to assess low values
(normal tissue) slightly decreased leading to stable, but low,
ROC-AUC over time. This overestimation of low values of
μOCT compared with the consensus values might be attributed
to the fact that thinner layers have fewer pixels to which the
signal can be fitted, therefore, the determination of the attenu-
ation coefficient of thinner layers is less accurate than for thicker
layers. We demonstrate this using an increasing layered stack of
50-μm-thick silicone elastomer-based optical phantom building
blocks developed following the recipe described in Ref. 14.
Using an 800-nm OCT system with an axial resolution of
4.5 μm, we find that thinner phantoms give larger variances
in determined attenuation coefficients (see Fig. 7).

5 Implications and Perspective
Our study shows that OCT attenuation analysis can be learned
after a few training and feedback sessions. All students
improved from T1 (instruction) to T2. After T2, their results
diverged, but from the decrease of the ICC, we see that oper-
ator-induced variance remains a dominating factor. For large-
scale clinical studies (IDEAL stages 3 to 5), automatic analysis
of OCT data will be a practical necessity given the large amount
of data to be analyzed. Automatic analysis may in part overcome
the difficulties described here. Several strategies are possible,
ranging from segmentation algorithms borrowed from ophthal-
mic application to delineation of (thin) layers to “per-pixel”
assessment of the attenuation coefficient as recently proposed
by Vermeer et al.18 Improvement of the analysis using these
approaches remains to be evaluated by extensive benchmarking
against manual assessment, preferably by expert consensus.

We conclude that the technical procedure for μOCT determi-
nation for tissue classification does not require extensive train-
ing since all observers improved in performance after one
training and feedback cycle. Paramount, however, to reduce
observer-induced variance, is accurate identification of sus-
pected lesions within the OCT images. Analysis of diseased,
often thicker, layers proved to be more accurate for novices
compared with analysis of healthy, often thinner, tissue layers.
Analysis of the latter tissues may be improved by automated
approaches based on image segmentation19 and per-pixel attenu-
ation analysis.18 For smaller-scale clinical studies (IDEAL
stages 1 and 2), a consensus evaluation of OCT attenuation
data is recommendable. Automation inherently overcomes
user-induced variance, yet will require thorough validation.
For large-scale studies (IDEAL stages 3 to 5), automatic analy-
sis, as described in Ref. 18, becomes a practical necessity.

Acknowledgments
The authors would like to thank the students L. van Ginkel,
R. Klaassen, and R-J. Goldhoorn for their time and effort in
this study.

References
1. J. van der Schoot et al., “The effect of glaucoma on the optical attenu-

ation coefficient of the retinal nerve fiber layer in spectral domain
optical coherence tomography images,” Invest. Ophthalmol. Visual
Sci. 53(4), 2424–2430 (2012).

2. K. A. Vermeer et al., “RPE-normalized RNFL attenuation coefficient
maps derived from volumetric OCT imaging for glaucoma assessment,”
Invest. Ophthalmol. Visual Sci. 53(10), 6102–6108 (2012).

3. F. J. van der Meer et al., “Quantitative optical coherence tomography of
arterial wall components,” Lasers Med. Sci. 20(1), 45–51 (2005).

4. G. van Soest et al., “Atherosclerotic tissue characterization in vivo by
optical coherence tomography attenuation imaging,” J. Biomed. Opt.
15(1), 011105 (2010).

5. C. Xu et al., “Characterization of atherosclerosis plaques by measuring
both backscattering and attenuation coefficients in optical coherence
tomography,” J. Biomed. Opt. 13(3), 034003 (2008).

6. K. Barwari et al., “Advanced diagnostics in renal mass using optical
coherence tomography: a preliminary report,” J. Endourol. 25(2),
311–315 (2010).

7. K. Barwari et al., “Differentiation between normal renal tissue and renal
tumours using functional optical coherence tomography: a phase I in
vivo human study,” BJU Int. 110(8b), E415–E420 (2012).

8. M. T. Bus et al., “Volumetric in vivo visualization of upper urinary tract
tumors using optical coherence tomography: a pilot study,” J. Urol.
190(6), 2236–2242 (2013).

Fig. 7 OCT image of a phantom with various layer thicknesses. The
graph shows fitted attenuation coefficients versus layer thickness.
The vertical axis depicts the μOCT values with the standard deviation
of the different phantoms in the upper picture. On the horizontal axis,
the thickness of the phantoms is given.

Journal of Biomedical Optics 121313-7 December 2015 • Vol. 20(12)

Wessels et al.: Learning curve and interobserver variance in quantification of the optical. . .

http://dx.doi.org/10.1167/iovs.11-8436
http://dx.doi.org/10.1167/iovs.11-8436
http://dx.doi.org/10.1167/iovs.12-9933
http://dx.doi.org/10.1007/s10103-005-0336-z
http://dx.doi.org/10.1117/1.3280271
http://dx.doi.org/10.1117/1.2927464
http://dx.doi.org/10.1089/end.2010.0408
http://dx.doi.org/10.1111/j.1464-410X.2012.11197.x
http://dx.doi.org/10.1016/j.juro.2013.08.006


9. E. C. C. Cauberg et al., “Quantitative measurement of attenuation coef-
ficients of bladder biopsies using optical coherence tomography for
grading urothelial carcinoma of the bladder,” J. Biomed. Opt. 15(6),
066013 (2010).

10. L. Scolaro et al., “Parametric imaging of the local attenuation coefficient
in human axillary lymph nodes assessed using optical coherence tomog-
raphy,” Biomed. Opt. Express 3(2), 366–379 (2012).

11. R. A. McLaughlin et al., “Parametric imaging of cancer with optical
coherence tomography,” J. Biomed. Opt. 15(4), 046029 (2010).

12. R. Wessels et al., “Optical coherence tomography in vulvar intraepithe-
lial neoplasia,” J. Biomed. Opt. 17(11), 116022 (2012).

13. P. L. Judson et al., “Trends in the incidence of invasive and in situ vulvar
carcinoma,” Obstet. Gynecol. 107(5), 1018–1022 (2006).

14. D. M. de Bruin et al., “Optical phantoms of varying geometry based on
thin building blocks with controlled optical properties,” J. Biomed. Opt.
15(2), 025001 (2010).

15. D. Faber et al., “Quantitative measurement of attenuation coefficients of
weakly scattering media using optical coherence tomography,” Opt.
Express 12(19), 4353–4365 (2004).

16. R. Wessels et al., “Functional optical coherence tomography of
pigmented lesions,” J. Eur. Acad. Dermatol. Venereol. 29(4), 738–
744 (2014).

17. P. McCulloch et al., “No surgical innovation without evaluation: the
IDEAL recommendations,” Lancet 374(9695), 1105–1112 (2009).

18. K. A. Vermeer et al., “Depth-resolved model-based reconstruction of
attenuation coefficients in optical coherence tomography,” Biomed.
Opt. Express 5(1), 322–337 (2014).

19. J. Tian et al., “Real-time automatic segmentation of optical coherence
tomography volume data of the macular region,” PLoS One 10(8),
e0133908 (2015).

Biographies for the authors are not available.

Journal of Biomedical Optics 121313-8 December 2015 • Vol. 20(12)

Wessels et al.: Learning curve and interobserver variance in quantification of the optical. . .

http://dx.doi.org/10.1117/1.3512206
http://dx.doi.org/10.1364/BOE.3.000366
http://dx.doi.org/10.1117/1.3479931
http://dx.doi.org/10.1117/1.JBO.17.11.116022
http://dx.doi.org/10.1097/01.AOG.0000210268.57527.a1
http://dx.doi.org/10.1117/1.3369003
http://dx.doi.org/10.1364/OPEX.12.004353
http://dx.doi.org/10.1364/OPEX.12.004353
http://dx.doi.org/10.1111/jdv.12673
http://dx.doi.org/10.1016/S0140-6736(09)61116-8
http://dx.doi.org/10.1364/BOE.5.000322
http://dx.doi.org/10.1364/BOE.5.000322
http://dx.doi.org/10.1371/journal.pone.0133908

