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Abstract. Hyperspectral imaging combines high spectral and spatial resolution in one modality. This imaging
technique is a promising tool for objective medical diagnostics. However, to be attractive in a clinical setting, the
technique needs to be fast and accurate. Hyperspectral imaging can be used to analyze tissue properties using
spectroscopic methods, and is thus useful as a general purpose diagnostic tool. We combine an analytic dif-
fusion model for photon transport with real-time analysis of the hyperspectral images. This is achieved by paral-
lelizing the inverse photon transport model on a graphics processing unit to yield optical parameters from diffuse
reflectance spectra. The validity of this approach was verified by Monte Carlo simulations. Hyperspectral images
of human skin in the wavelength range 400–1000 nm, with a spectral resolution of 3.6 nm and 1600 pixels across
the field of view (Hyspex VNIR-1600), were used to develop the presented approach. The implemented algo-
rithm was found to output optical properties at a speed of 3.5 ms per line of image data. The presented method is
thus capable of meeting the defined real-time requirement, which was 30 ms per line of data.The algorithm is a
proof of principle, which will be further developed. © The Authors. Published by SPIE under a Creative Commons Attribution 3.0
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1 Introduction
Hyperspectral imaging has been recently adopted for diagnostic
imaging of human skin. Hyperspectral imaging combines high
spatial and spectral resolution in one modality, giving images
with full spectral resolution in every pixel.1,2 This makes it a
promising tool for tissue characterization and optical diagnos-
tics.1,3,4 Flexible wide-field imaging options give the possibility
of rapid scanning of both larger areas and samples and smaller
details, e.g., full body scans and close up imaging with micro-
scopic resolution.5 The physical size of the equipment makes it
possible to place it on a small trolley, and it can thus be used for
bedside scanning.6 The hyperspectral camera used in this study
is a push broom, line-scanning device with a capture speed of
30 ms per line of data.

The amount of collected data is an obstacle for fast hyper-
spectral data processing while scanning. With typical files being
in the order of several gigabytes, processing time is prohibitive
for advanced analysis. Time is a crucial parameter for the tech-
nique to be clinically relevant. Processing speed should preferably
obey an external real-time deadline limit defined by the acqusition
speed of the hyperspectral camera. Commodity graphics process-
ing units (GPUs) are well known to satisfy heavy computing
requirements.7,8 GPUs are normally used to process graphics on
personal computers and are relatively inexpensive. Such graphics
cards can potentially boost processing speed due to the inherent
parallelizability of hyperspectral data processing.

It is valuable to estimate the concentrations of various tissue
components (blood, melanin, and water) for diagnostic purposes.
Spectral unmixing algorithms are frequently used to obtain con-
centration maps of materials in remote sensing.9 Applying the
same methods to analyze the hyperspectral images of skin is
challenging due to the turbid, layered nature of human skin.
One aim of this study is to develop a method for spectral unmix-
ing of the hyperspectral images of human skin.

Forward light transport models, such as Monte Carlo10 or the
diffusion approximation,11–13 may be used to simulate light
transport in media such as human skin. These type of models
have previously been used to extract optical properties of tis-
sue.13–15 This has been typically done by comparing measured,
diffuse reflectance spectra to simulations, and tweaking the
input parameters of the simulations to obtain the best possible
fit. To our knowledge, these methods have never been applied to
hyperspectral images in real-time during data collection. Some
reports exist on the application of inverse photon transport mod-
els on hyperspectral images after image acquisition.16,17

This paper presents a deterministic hyperspectral inverse mod-
eling approach based on diffusion theory and spectral unmixing.
These analytical methods are suitable for GPU implementation.
The analysis chain fulfills the real-time requirements of the hyper-
spectral imaging process. The optical properties are delivered line
by line during data collection, and no additional computational
time is needed beyond the time it takes to scan the sample.

The accuracy of the results obtained using the inverse model
was evaluated against numerical simulations. However, as this is
a proof of a new concept, real-time processing concerns were
given priority over simulation accuracy. This issue will be
addressed in further development of the concept.
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2 Materials and Methods

2.1 Background

The main objective of the study was to develop an algorithm
for extraction of skin properties from hyperspectral images in
real-time during scanning. This has been done using GPU par-
allelization. GPU hardware is essentially an SIMD (single
instruction and multiple data) vector processor.18 For maximum
parallelization, this requires the same sequence of instructions to
be independently applied to multiple data. Since the hyperspec-
tral data are discretized in pixels and wavelengths, doing indi-
vidual processing on pixels and wavelengths is the natural way
to parallelize the GPU processing.

A photon transport model is iterated with respect to skin
parameters, such as blood volume fraction and melanin concen-
tration. In order to apply the same sequence of GPU instructions
for all data, the iteration strategies will be limited to rather sim-
ple iteration strategies. To fulfill the independency requirement,
each pixel in the hyperspectral image is treated as an indepen-
dent diffuse reflectance spectrum measured on a laterally infinite
layered medium. It is possible to achieve pixel interdependency
and nondeterminism, but at the cost of reducing GPU processing
optimality. This is not applied in this preliminary study.

The GPU code was designed for a computer with an Intel
Core i7 CPU (8 cores), 6 GB RAM and an NVIDIA GeForce
GTX 670 GPU. Debian GNU/Linux (jessie) was used as the
operating system. The code was integrated into a hyperspectral
streaming framework developed by the Norwegian Defence
Research Establishment.19

2.2 Optical Modelling

2.2.1 Inverse model

Skin model. The skin model applied in the inverse model is
a two-layered model which was previously described by Spott
et al.,13 Randeberg et al.,20,21 and Svaasand et al.11 In short, it
consists of two planar layers. The first layer represents an epi-
dermal layer of finite thickness containing melanin and a small
amount of blood. Blood is added to the epidermal layer to cor-
rect for the depth variations of the papillae. The second layer is a
homogeneous, semi-infinite dermal layer containing blood and
other chromophores evenly distributed throughout the layer.

The applied melanin absorption model was adapted from
Spott et al.13 and is given as

μa;mðλÞ ¼ μa;m;694 ·

�
λ

694 nm

�
−3.46

: (1)

The melanin content is denoted by the melanin absorption at
694 nm (μa;m;694) in units of m−1. The absorption in blood is
assumed to arise from deoxygenated and oxygenated hemo-
globins.22 It depends on the blood volume fraction (BVF) and
oxygen saturation (oxy). A constant background absorption of
25 m−1 was added to the model.11 Absorption spectra of hemo-
globin, fat, and melanin are shown in Fig. 1.

In the model, the absorption spectra are multiplied by their
volume fractions and summed to yield the total wavelength-
dependent dermal absorption coefficient, μa;dðλÞ.

The reduced scattering coefficient in the tissue is modeled by
an expression given by Jacques25

μ0sðλÞ¼100m−1 ·

�
aMie

�
λ

500nm

�
−bMieþaRay

�
λ

500nm

�
−4
�
:

(2)

Bashkatov et al.26 give aMie ¼ 18.780, aRay ¼ 17.6, and
bMie ¼ 0.22 as values for the coefficients in the expression.
This is based on data obtained from whole skin ex vivo samples,
and is used for both dermis and epidermis. The anisotropy factor
g is modeled as

gðλÞ ¼ 0.62þ λ · 29 · 10−5; (3)

reported by Van Gemert et al.27 The index of refraction used for
both skin layers was 1.4.

Light transport model. The light transport model is based
on a diffusion model with isotropic source functions, derived
by Svaasand et al.11 This model is used to obtain diffuse reflec-
tance as a function of wavelength and skin optical parameters.
The diffusion model has fast, analytic solutions well suitable for
a real-time computing environment. In the diffusion approxima-
tion, it is assumed that scattering dominates over absorption.
This assumption is less valid below 600 nm for skin due to
the high absorption coefficients for hemoglobin and melanin
(see Fig. 1). It has been shown that the approximation still
results in reflectances close to Monte Carlo simulations for
the 450–800 nm spectral range.20

The error between the Monte Carlo model and the diffusion
approximation was reported by Randeberg et al.20 to be mini-
mized by applying a constant scaling factor to the absorption
coefficients in the diffusion model. This scaling factor has not
been explicitly applied. However, a constant deviation is present
in all extracted parameters, as found by Randeberg et al.20 The
extracted parameters are thus expected to characterize the relative
variations of properties between different tissues well.

A Monte Carlo-based inverse model will not fulfill real-time
requirements, even if they are GPU-accelerated.7 Typical com-
puting times for 1600 pixels and 160 wavelengths, based on our
own experiences, are in the order of days.

The derivation of the diffusion model assumes a laterally
homogeneous skin model within the range of a few mean trans-
port lengths. A valid application of the diffusion model to single
hyperspectral pixels would require the lateral broadening of the
light to be smaller than the spatial width of the hyperspectral
pixel. Since this is not the case, photons will be scattered
from pixel to pixel. The properties extracted from a single
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Fig. 1 The absorption coefficients of blood,22 water,23 fat,24 and
the melanin model13 for sun-protected north European skin
(μa;m;694 ¼ 350 m−1).
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pixel will therefore be influenced by the surrounding pixels.
This effect has been further investigated in this study.

Fitting algorithm. The diffusion model is applied to calcu-
late the wavelength-dependent diffuse reflectance. By compar-
ing the calculated reflectance against a measured reflectance, the
skin parameters may be found iteratively. The iteration strategy
is designed with GPU implementation in mind, requiring inde-
pendence across wavelengths and pixels and determinism in the
set of instructions used. The iteration strategy is therefore based
around the independent estimation of the epidermal and dermal
absorption coefficients using Newton–Rhapson’s method28 and
the spectral unmixing of these.

The number of layers is kept down to two layers in order to
keep the number of fitted parameters down to a minimum, thus
simplifying the reflectance expression. It is known that the skin
is a nonhomogeneous organ and is approximated more accu-
rately by three or more skin layers. The two-layered skin model
is, therefore, applied on separate wavelength ranges where the
penetration depth can be assumed to be more or less uniform
across the given wavelength range. It is assumed that this
approach will yield the mean properties down to the given pen-
etration depth. This is illustrated in Fig. 2 and has been done
previously by Randeberg et al.21 This approach is also similar
to work done by Tseng et al.29 and Saager et al.30 The two
chosen fitting intervals are 510–590 and 690–820 nm. Light
penetrates more superficially at the shorter wavelengths due to
the high absorption of hemoglobin and melanin, while light
penetrates more deeply at the longer wavelengths (see Fig. 1).
The exact limits have been chosen through thorough testing on
real data and close observation of the chromophore absorption
spectra. Typical mean optical penetration depths through dermis
are estimated to around 200 μm for 510–590 nm and above
500 μm for 690–820 nm.

The fixed parameters within the chosen skin model are:

• scattering coefficients [Eq. (2)]

• thickness of the layers (100 μm for epidermis).

The parameters used in Eq. (2) are assumed to have a slow
spatial variation for normal skin tissues and can be assumed
fixed, although they may be different for different types of
tissues. The thickness of the epidermis varies by person and
location, and thickness under- or overestimation results in either
a lowered or increased melanin content.

The fitted parameters within the chosen skin model, as
applied to a given wavelength interval, are:

• melanin absorption in epidermis

• BVF in dermis

• oxygen saturation of the blood in dermis

• other chromophores (in this paper: water, fat, and constant
baseline absorption).

The basic fitting procedure is outlined in Fig. 3. The dermal
absorption coefficient μa;d is estimated and unmixed at two
wavelength intervals following determination of melanin in
epidermis. The melanin extraction method is outlined in
Fig. 4. The melanin absorption coefficient μa;m;694 is assumed
to be 100 m−1 as a starting value.

The dermal absorption coefficients are derived for the wave-
length interval 730–830 nm. Melanin and hemoglobin are then
fitted to the absorption coefficients. Next, the hemoglobin
parameters are fixed and the epidermal absorption coefficients
are derived. Melanin is then fitted to the epidermal absorption
coefficients to get the corresponding melanin content. Using the
new melanin estimate, the method is run a second time to get the
final estimate of the melanin content.

The wavelength-dependent dermal absorption coefficient is
then found across the entire spectral range. Due to a linear rela-
tionship between the chromophore absorption coefficients and
the total dermal absorption, the chromophore contributions to
the dermal absorption spectrum are found using a spectral
unmixing algorithm.

The chromophore spectra for this unmixing procedure are
known a priori and only estimation of chromophore volume
fractions is desired for the spectral unmixing part. For a single
pixel, the derived dermal absorption can be written as

~μa;d ¼ A~x; (4)

where the matrix A consists of the chromophore absorption
spectra and ~x are the concentrations fx0; x1; x2; : : : g of each
material to be found under a non-negativity constraint.

The sequential coordinate-wise algorithm for non-negative
least-squares problems (SCA)31 is used to estimate the solutions
to Eq. (4), and thus unmix the absorption spectra. This algorithm
has no proven convergence guarantees, but is reportedly fast. It

Fig. 2 Illustration of the two-layered skin model applied to a three-lay-
ered situation. The two-layered skin model approximates the proper-
ties of multiple, inhomogeneous layers to a single, homogeneous and
semi-infinite (s.i.) layer where the derived properties are distributed
evenly throughout the layer. Different parts of the diffuse reflectance
spectrum contain information about different penetration depths.

Fig. 3 Outline of the inverse model algorithm, where the absorption in
dermis is corrected for melanin in epidermis.
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requires only the matrix H ¼ ATA and optimizes with respect to
one variable at a time, suitable for a memory-effective GPU par-
allelization in a demonstration prototype.

The unmixing of the dermal absorption coefficient deter-
mines the fitted chromophores (hemoglobin, water, fat, and
the constant baseline absorption) in two separate wavelength
intervals. In addition, melanin is included in the fitting to rectify
potential melanin underestimation in epidermis.

2.2.2 Numerical simulations

Reflectance spectra simulated using a four-layered Monte Carlo
model were used to test the reliability of the inverse diffusion
model. In the Monte Carlo model, the dermis was subdivided
into two layers, the first representing papillary dermis, and the
second reticular dermis. The fourth layer represented a blood-
less subcutaneous layer containing 40% fat and 60% back-
ground absorption. The implemented background absorption
was taken from Salomatina et al.32

μa;bðλÞ ¼ 100 m−1 · ð0.82þ 16.82e−ðλ−400 nmÞ∕80.5 nmÞ:
(5)

The reduced scattering coefficient in subcutis was modeled
by an expression given by Naglic et al.,33 comparable to the scat-
tering coefficients reported by Salomatina et al.,32

μ 0
sðλÞ ¼ 1500m−1 · ð16.34þ 303.8e−λ∕180.3 nmÞ: (6)

The refraction index n was set to 1.4 for all layers. Dermis
was modeled using blood and the constant background absorp-
tion presented earlier in Sec. 2.2.1. The reduced scattering coef-
ficient for dermis was calculated using Eq. (2). This will serve to

ease the applicability of the inverse diffusion model since the
same optical properties are modeled. The main purpose of
the simulations is to:

• Test the accuracy of the optical parameters given by the
inverse diffusion model.

• Test the applicability of the one-dimensional (1-D) diffu-
sion model to describe a 3-D situation.

A 1-D Monte Carlo model7 was used to simulate reflectance
spectra. The melanin in epidermis and the BVF in the superficial
dermal layer were varied. The inverse model was tested for its
ability to estimate the changes in these parameters and the sta-
bility of the other estimated parameters (oxygenation and BVF
in the deeper dermal layer). The skin model is shown in Fig. 5.
The melanin absorptions corresponded to lightly and more
pigmented Caucasian skin. Diffuse reflectance spectra in the
wavelength range between 400 and 848 nm with a step size of
2 nm were simulated.

The inverse diffusion model used to derive optical properties
from the 1-DMonte Carlo spectra involved the use of an ordinary
non-negative least-squares algorithm34 for the unmixing of the
absorption spectra, instead of SCA unmixing as presented earlier.
This was done in order to evaluate the performance of SCA
against a more ordinary non-negative least-squares algorithm.

The iteration strategy has been evaluated against results
obtained using MATLAB’s (Version 8.1.0.604, The Math-
Works Inc., Natick, Massachusetts, USA) lsqcurvefit routine,
using a Trust-region reflective optimization approach with upper
and lower boundary constraints. This was run on the wavelength
range 690–820 nm for all 1-D Monte Carlo spectra.

We also performed 3-D Monte Carlo simulations to test the
applicability of the 1-D diffusion model on single pixels in
a mock hyperspectral image. An implementation of 3-D
Monte Carlo developed by Milanic and Majaron35 was used to
obtain reflectance images of a 1-mm diameter junctional nevus,
and an intradermal vessel at a depth of 0.25 mm and with
a diameter of 0.2 mm. Skin geometries are shown in Figs. 6
and 7. The simulated wavelength range for the diffuse reflec-
tance was 42 wavelengths from 687 to 835 nm with a step
size of 3.6 nm. This wavelength discretization was used in
order to simulate a hyperspectral dataset.

The blood vessel was simulated using the blood absorption
and scattering values from Friebel et al.36 and a blood oxygena-
tion of 95%. The refraction index of the vessel was set to

Fig. 4 Outline of the melanin estimation algorithm. The method is run
on the wavelength interval from 730 to 830 nm, and is run twice.

Fig. 5 Geometry of the one-dimensional (1-D) Monte Carlo forward
model used to simulate skin reflectance. Parameter values within
brackets are varied, the other parameters are fixed.
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nðλÞ ¼ 1.357þ 6.9 · 103

λ2
þ 7.6 · 108

λ4
; (7)

as reported by Li et al.37

The inverse diffusion model used for the 3-D Monte Carlo
signals involved SCA unmixing for the unmixing of the absorp-
tion spectra, as presented earlier in Sec. 2.2.1.

2.3 Experimental

The developed inverse diffusion model was also tested on mea-
sured hyperspectral data.

Hyperspectral images of skin were collected using a push-
broom HySpex VNIR-1600 camera (Norsk Elektro Optikk,
Lillestrøm, Norway).38 A healthy, female volunteer (Caucasian,
39 years old) with fair skin (Fitzpatrick skin type I/II) had the
volar side of her forearm imaged. Two images were obtained.
The first image was obtained as a baseline. The second
image was obtained after 5 min of occlusion induced by apply-
ing a blood pressure cuff. This was done in order to modulate
the oxygenation and blood content in the skin. The images had
a size of 1600 pixels ðsamplesÞ × 160 wavelengths ðbandsÞ×
a varying number of lines. Hyperspectral data lines were

scanned at a speed of 30 ms per line of data, which was also
chosen to be the real-time deadline limit for the processing.

The lens had a focal length of 30 cm. The pixel field of view
was approximately 0.4 mrad.38 Pixel size on the skin surface
after magnification using a 30 cm lens was approximately
60 × 60 μm.

Two linear light sources were used for illumination (Model
2900 Tungsten Halogen, Illumination Technologies, New York).
Polarizers were mounted on the camera lens and the light sources
(VLR-100 NIR, 450–1100 nm, Meadowlark Optics, Frederick,
Colorado) in order to avoid specular reflection.

The images were converted into reflectance and corrected
for uneven illumination across the field of view using a
Spectralon reflectance target (SRT-50-050 Reflectance Target,
12.7 × 12.7 cm, ACAL Bfi Nordic AB, Uppsala).6 Spectral
variations in the specified intensity of the reflectance standard
were taken into account in the conversion. The images were
denoised using the maximum noise fraction transform (MNF).39

3 Results

3.1 Timing Results

The specific timing results for each GPU operation as applied on
a 1600 samples × 160 bands hyperspectral data line are shown

Fig. 6 Geometry of the skin model containing a superficial vessel.
The vessel was modeled as a circular tube. A horizontal cross section
through the center of the vessel is shown on top. A vertical cross sec-
tion is shown below. The image scale of the vertical cross section
differs from the horizontal cross section.

Fig. 7 Geometry of the skin model containing a mole. The mole was
modeled as a circular area with increased melanin content. A horizon-
tal cross section through the center of the mole is shown on top.
A vertical cross section is shown below. The image scale of the
vertical cross section differs from the horizontal cross section.
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in Fig. 8. The final results, i.e., melanin and the blood param-
eters from different wavelength intervals, are delivered within
3.5 ms. This computation time is well within the real-time dead-
line limit imposed by the hyperspectral system, meeting the fast
computing requirement, and leaving GPU time for other future
processing operations.

3.2 Simulation Results

3.2.1 One-dimensional Monte Carlo modeling

The GPU inverse diffusion model was evaluated on diffuse
reflectance spectra obtained by a multilayered, 1-D Monte
Carlo model. This was compared against an ordinary inverse
diffusion model based on multivariate objective fitting (due
to potential confusion, henceforth referred to as “the objective
fitting”). The BVFs extracted from the wavelength range 510–
590 nm are plotted in Fig. 10. The means and standard devia-
tions of the other parameters are displayed in Table 1. A full list
of extracted parameters is shown in Table 2. Some Monte Carlo
spectra and their inverse diffusion model fits are shown in Fig. 9.

The melanin estimates from the diffusion inverse model and
objective fitting at the near infrared (NIR) wavelength range are
overestimated by 16% and 15% for the lower melanin content

and 1% and 3% for the higher melanin content, respectively. The
inverse diffusion model has random variations in the extracted
melanin parameter, while the objective fit is more or less stable.
The melanin extracted from the blue–green wavelength interval
for the objective fit has systematic deviations with increasing
BVF in the superficial dermal layer.

The oxygenations extracted from the NIR wavelength range
agree with each other across the two methods, as do the BVFs.
The extracted oxygenation in the NIR wavelength range
decreases by 2–3 percentage points with respect to the increased
BVF in the superficial dermal layer. The oxygenation in the
blue–green wavelength range does not change with respect to
the BVF for the inverse diffusion model. For the objective fit,
the oxygenation in the blue–green wavelength range increases
for increased BVF in the upper dermal layer. The BVFs
extracted from the NIR wavelength range using either method
follow a small increase with increasing blood volume in the
upper dermal layer.

The oxygenation in the NIR wavelength range extracted
using the inverse diffusion model is lower compared to the
input oxygenation in the lower dermal layer. The oxygenation
in the blue–green wavelength range is higher compared to the
input oxygenation in the upper dermal layer.

Fig. 8 Total computational times for the inverse modelling of one hyperspectral line of data. Three wave-
length intervals were used in the unmixing of the dermal absorption, the line of data had 1600 samples ×
160 bands of data.

Table 1 Mean and standard deviation for extracted parameters from themultilayeredMonte Carlo forward model. Statistics were computed across
the dataset generated by varying the blood volume fraction (BVF) in the superficial dermal layer from 0.5% to 3.0% in steps of 0.5%. The extracted
parameters are the melanin absorption at 694 nm (μa;m;694), the oxygenation in the 510–590 and 690–820 nm wavelength intervals (oxy510−590,
oxy690−820) and the BVF in the 690–820 nm wavelength interval (BVF690−820). Inv. DM is the inverse diffusion model, obj. fit is the inverse diffusion
model using a multivariate objective fitting scheme. Input oxygenation for the superficial and deep dermal layer was 50% and 80%, respectively.
BVF in the deep dermal layer was 3%.

Method Input μa;m;694 (m−1) Output μa;m;694 (m−1) oxy510−590 oxy690−820 BVF690−820

Inv. DM 227 264� 7 0.65� 0.01 0.77� 0.01 0.026� 0.002

Inv. DM 683 692� 11 0.67� 0.01 0.76� 0.03 0.026� 0.002

Obj. Fit 227 230� 39 0.66� 0.02 0.76� 0.02 0.025� 0.002

Obj. Fit 683 682� 31 0.70� 0.03 0.77� 0.02 0.028� 0.002
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The BVFs in Fig. 10 follow the increase in the BVF in
the upper dermal layer. The values are overshot compared to
the BVF extracted from the NIR wavelength range.

3.2.2 Three-dimensional Monte Carlo modeling

Results of applying the hyperspectral inverse model to a 3-D
Monte Carlo model of a mole are shown in Fig. 11. The 3-D
vessel results are shown in Fig. 12.

The determined melanin values outside the mole are around
250 m−1. The determined melanin values inside the mole
approach 650 m−1. Melanin input values were 225 and
1135 m−1, respectively. Increased melanin values are seen out-
side of the mole boundary. The mean optical penetration depth
can be calculated to be approximately 0.97 mm in dermis and
0.2 mm in the epidermis of the mole area. This was calculated

using the following definition of the mean optical penetration
depth,40

δ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

3½ð1 − gÞμs þ μa�μa

s
;

and the modeled absorption and scattering coefficients at
687 nm. The BVF is about 3.7%. The oxygen saturation
stays constant at 100%. Both of these parameters are extracted
from the 690–820 nm wavelength interval. Some random, dis-
connected pixels inside the mole have a slightly lowered oxy-
genation saturation, to around 97%. This is likely due to
increased noise levels in the mole due to higher absorption.

The determined melanin values for the vessel image stay
constant to about 250 m−1. The BVFs outside the vessel are

Table 2 Extracted parameters from the one-dimensional (1-D) Monte Carlo forward model for the different inverse models. The number below the
parameter name denotes from which wavelength range the parameter was extracted (510–590 or 690–820 nm). μa;m is the epidermal melanin
absorption coefficient at 694 nm. Input oxygenation for the superficial and deep dermal layer was 50% and 80%, respectively. Blood volume fraction
(BVF) in the deep dermal layer was 3%.

Input parameters Inv. DM Objective fit, DM

μa;m BVF1 μa;m oxy1 BVF1 oxy2 BVF2 μa;m;1 oxy1 BVF1 μa;m;2 oxy2 BVF2

227 0.005 254 0.66 0.017 0.77 0.023 248 0.63 0.018 260 0.78 0.023

227 0.0075 263 0.65 0.019 0.79 0.024 235 0.63 0.020 261 0.78 0.024

227 0.01 260 0.64 0.022 0.78 0.025 226 0.63 0.022 259 0.78 0.024

227 0.0125 266 0.63 0.024 0.79 0.024 218 0.64 0.025 265 0.78 0.024

227 0.015 252 0.64 0.027 0.76 0.025 206 0.66 0.027 259 0.76 0.025

227 0.0175 271 0.65 0.028 0.79 0.025 201 0.67 0.030 266 0.78 0.025

227 0.02 262 0.64 0.031 0.76 0.027 187 0.66 0.033 260 0.76 0.026

227 0.0225 264 0.65 0.033 0.75 0.027 179 0.68 0.036 257 0.74 0.027

227 0.025 273 0.65 0.035 0.76 0.028 172 0.68 0.039 261 0.75 0.027

227 0.0275 267 0.66 0.038 0.75 0.029 160 0.69 0.042 260 0.74 0.027

227 0.03 275 0.66 0.040 0.76 0.028 151 0.70 0.045 265 0.75 0.027

683 0.005 697 0.70 0.019 0.80 0.022 702 0.67 0.019 710 0.81 0.025

683 0.0075 710 0.67 0.021 0.80 0.026 690 0.67 0.022 706 0.79 0.026

683 0.01 709 0.67 0.024 0.79 0.026 686 0.68 0.024 706 0.79 0.026

683 0.0125 689 0.67 0.028 0.76 0.025 673 0.69 0.027 703 0.78 0.027

683 0.015 701 0.64 0.030 0.78 0.026 669 0.68 0.030 705 0.78 0.027

683 0.0175 685 0.65 0.034 0.78 0.027 659 0.70 0.033 711 0.78 0.027

683 0.02 679 0.67 0.037 0.73 0.023 648 0.72 0.036 705 0.76 0.028

683 0.0225 680 0.66 0.040 0.74 0.027 639 0.72 0.039 702 0.76 0.029

683 0.025 687 0.67 0.042 0.73 0.026 633 0.73 0.042 705 0.75 0.029

683 0.0275 687 0.67 0.045 0.73 0.027 622 0.73 0.046 704 0.75 0.030

683 0.03 693 0.68 0.048 0.74 0.028 621 0.75 0.049 701 0.74 0.030
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around 3.7%, while the area above the vessel approaches 5.0%.
The modeled BVF in dermis was 1.0%, while the vessel was
assumed to be a small tube with pure blood absorption, located
at a depth of 0.25 mm. The increased BVF ranges over an area
corresponding to a diameter of 0.5 mm. The oxygenation stays
constant to 100% throughout the vessel. Both parameters were
extracted from the 690–820 nm wavelength interval.

3.3 Hyperspectral Image Inverse Modeling Results

Red, green, and blue (RGB) images and results of the inverse
model are shown in Figs. 13 and 14, before and after 5 min of
cuff-induced occlusion of the arm, respectively. Individual spec-
tral fits are shown in Fig. 15. The images have been subsetted in
order to ignore nonskin regions with a high signal-to-noise ratio
and to analyze only the parts of the image that are well

illuminated and in focus. The approximate width and height
of the imaged subsetted area are 60 and 120 mm.

The total time used to process the subsetted (1800 lines ×
900 samples) image was 7 s.

Water and fat were fitted for the absorption spectra, but are
not shown here.

Focus and illumination problems in the experimental data are
propagated into an overestimation of the BVF and melanin in
the upper left corner and lower right corner of the image. These
artifacts in the data are due to the curvature of the arm. The
melanin content was estimated to be about 600 m−1 in the cen-
tral parts of the mole. The blood parameters extracted from
either wavelength range show structures reminiscent of vessels.

After occlusion, the estimated blood content is increased
both in normal tissue and in the blood vessels. The oxygenation
is decreased at both wavelength ranges. The melanin is more or
less unaffected, although the melanin in the mole is decreased
compared to unaffected skin.

4 Discussion
The aim of this paper is to present a proof of concept for a real-
time inverse modeling method for hyperspectral images of skin.

The steps in the inverse modeling approach have been chosen
in order to make a real-time implementation using GPU paralle-
lization viable. A two-layered model is applied to multilayered
tissue in each point of the hyperspectral image. The two-layered
approach is verified through 1-DMonte Carlo simulations, while
the point-based approach is verified through the 3-DMonteCarlo
simulations. In addition, the model is applied to a set of basic
hyperspectral images to show the potential of the technique.

Large individual variations in optical properties can be
expected from measurements on in vivo tissue. The optical prop-
erties will vary as a function of temperature and hydration.41–44

Fixed spectra of optical properties are applied in the inverse
models, which have been obtained ex vivo under specific
conditions and after preparation techniques, which may affect
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the coefficients.43,45 As a result, there will always be a large
uncertainty in the obtained tissue properties, no matter how
accurate the inverse model may be when applied on numerical
simulations. This has to be taken into account when setting the
accuracy requirements and evaluating these kind of methods.

In general, our developed inverse diffusion model provides a
mean of the tissue parameters. The resulting mean is a mean of
all tissue parameters reached by the light. The model character-
izes the changes of this mean. The output parameters from
the simulations are stable despite the change in the BVF of
the upper dermal layer. The BVF extracted using the blue–green
wavelength range characterizes this change well.

The isotropic diffusion model is known to result in higher
reflectance values than the corresponding Monte Carlo reflec-
tance for the same set of input parameters and high absorp-
tion.20,46 This will explain the slightly increased melanin
values produced by the inverse diffusion model and the
increased BVF extracted from the blue–green wavelength
range. The difference gets higher with increased input melanin
absorption. The results obtained using our methods and the

objective multivariate fit are comparable for the NIR wavelength
range. Mainly the BVFs are comparable for the blue–green
wavelength range, while the objective fit deviates for the mela-
nin and oxygenation. This seems to be due to cross talk, possibly
between hemoglobin and melanin.
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Fig. 14 Extracted skin properties from the volar side of the forearm of
a Caucasian woman after 5 min of cuff-induced occlusion. These
properties are the blood volume fraction in (a) 510–590 nm and
(b) 690–820 nm, the oxygenation in (c) 510–590 nm and (d) 690–
820 nm, (e) the melanin content and (f) the RGB image.
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Fig. 13 Extracted skin properties from the volar side of the forearm of
a Caucasian woman. These properties are the blood volume fraction
in (a) 510–590 nm and (b) 690–820 nm, the oxygenation in (c) 510–
590 nm and (d) 690–820 nm, (e) the melanin content and (f) the RGB
image.
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The situation for the 3-D Monte Carlo model is comparable
to the results for the 1-D case. The melanin outside of the mole
has the same trend as for the 1-D situation. The determined
melanin content inside the mole is lowered compared to the
input value, although there is no apparent misfitting. Using the
estimated penetration depths as an estimate of the mean trans-
port length, it is clear that some of the light entering the mole
will exit normal skin and vice versa. This results in a washed out
appearance of the mole and higher reflectance values inside the
mole region. This gives the surrounding pixels the appearance of
a higher melanin content. The diffuse reflectance of the mole has
a slightly higher diameter (1.5 mm) than the actual mole (1 mm).
This is to be expected in a highly scattering tissue.

The BVF extracted from 3D Monte Carlo is increased com-
pared to the BVF extracted from the 1-D Monte Carlo simula-
tion. This is not due to the difference between 1-D and 3-D
Monte Carlo modelings, as the extracted properties outside both
mole and vessel should be the same as for the 1-D case due to
similar assumptions. The source of this difference might be the
SCA method, which was used for unmixing of the absorption.
SCA (sequential coordinate-wise algorithm for non-negative
least-squares problems) was chosen for the unmixing of the
derived absorption coefficients in the hyperspectral images
due to its suitability for GPU implementation. This method was
not used in unmixing of the absorptions in the 1-D case, where
an ordinary non-negative least-squares algorithm was applied.
The use of SCA apparently also results in increased oxygena-
tion. The oxygenation should be slightly lower than the input
oxygenation of 95%. This can be traced to a cross talk between
the constant baseline absorption and the blood absorptions,
where SCA encounters more challenges than an ordinary non-
negative least-squares algorithm.

The changes are still characterized well. The properties do not
change significantly across the mole, and an increased BVF is
seen for the vessel area. Many scattering events give a washed-
out appearance, which makes complete reconstruction difficult.
We are still able to extract useful information from the model.

The same behavior is seen for the experimental data. The
properties have a washed-out, diffuse look due to lateral broad-
ening. The characterized properties are, on the other hand, more
realistic than the properties extracted from the 3-D Monte Carlo
model. The oxygenation saturation for the NIR wavelength
range does not approach 100% and the BVFs are not unrealis-
tically high. It seems that the cross talk between the constant
baseline absorption and the blood parameters is not seen here.

With the results from the simulated mole in mind, we can
expect the melanin content to be underestimated inside the
real mole. This is seen. The other extracted parameters seem
to be affected by this. They were not affected for the 3-D Monte
Carlo. This seems to be mainly due to a change in scattering
parameters. Compared to normal skin, scattering properties
are altered due to the structural difference of a mole. The method
does not rectify variations in scattering, though scattering var-
iations may be observed in the more extreme cases by quantify-
ing the misfit between the different wavelength ranges.

The trends of the extracted parameters are as expected from
the experiences with the simulations. The BVFs are increased
where blood vessels are localized. The vessels extracted from
the NIR wavelength range are likely to carry venous blood
since the depths of these are less than the depths of the large
arteries. The oxygenation here is lowered compared to the oxy-
genation in the rest of the tissue, which is assumed to be correct.

The extracted oxygenations are decreased after occlusion of the
arm, which is expected.

In general, the oxygenation extracted from the blue–green
wavelength interval is lower than the oxygenation extracted
from the NIR wavelength interval. This agrees with results
found by Tseng et al.,29 and is likely due to differences in
vascularization down to the different penetration depths.21

The melanin is slightly underestimated for lower oxygen-
ations and at the locations of larger blood vessels. The former
is mainly due to cross talk with deoxyhemoglobin. The latter
may be due to both cross talk and changes in the boundary con-
dition assumptions (e.g., changes in refraction indices).

SCAwas used in the unmixing process. While having no con-
vergence guarantees, it still minimizes the differences between
the fitted and derived absorption coefficients. This is evident
from the displayed spectra fits in Fig. 15. Still, it should not
be trusted for the unmixing of larger wavelength intervals and
many chromophores. The experiences with theMonte Carlo sim-
ulations showed SCA to be less trustworthy than a more ordinary
non-negative least-squares algorithm. SCA has, however, the ad-
vantage of being more suitable for GPU implementation. Future
work will involve improving the unmixing algorithms. This can
be done either by improving SCA, adapting other non-negative
least-squaresGPU implementations,47 or by implementing a non-
negative least squares algorithm optimized for problems such as
the unmixing of hyperspectral imagery.48

Illumination problems in the image lead to some artifacts in
the extracted parameters. This issue in the imaging technique is
currently being addressed in another study which aims to use
3-D modeling to obtain a digital elevation model and flatten
the image.

The developed model is a proof of concept where we have
shown the possibility of characterizing spatially resolved tissue
properties in real-time. The model will still be further developed
to obtain more complexity and accuracy. The isotropic source
functions used in the model will be exchanged by more accurate
Delta-Eddington source functions.46 No special assumptions
were made for the blood vessel distribution in the skin
model. It is known that assuming an average blood vessel diam-
eter will affect the apparent absorption levels in blood.49 The
lack of such a correction of the blood absorption may have
affected the extracted blood oxygenation and BVF, and is some-
thing which will be implemented in the future.

The initial results obtained from the hyperspectral images
show promise in the characterization of tissue properties. The
method can be used to identify interesting areas during image
scan, such as areas where the optical properties are changed (i.e.,
wounds, moles, bruises, or other skin lesions). Classification
and statistical methods can be run on the estimated tissue prop-
erties to automatize this identification process. The interesting
areas may then be more closely investigated.

5 Conclusion
An inverse photon transport model with real-time performance
has been developed for a hyperspectral image scanning system
using GPU parallelization. The model fulfills the real-time
analysis constraints set by the hyperspectral setup, leaving a lot
of computational time for additional image processing.

Simulations have shown that the inverse model has an ability
to characterize changes in optical properties. Running the inverse
model on hyperspectral images of skin shows promising results.

Future work will involve improvement of the unmixing algo-
rithms and complexity of the models.
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