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ABSTRACT. Future space-based coronagraphs will rely critically on focal-plane wavefront sens-
ing and control with deformable mirrors (DMs) to reach deep contrast by mitigating
optical aberrations in the primary beam path. Until now, most focal-plane wavefront
control algorithms have been formulated in terms of Jacobian matrices, which
encode the predicted effect of each DM actuator on the focal-plane electric field.
A disadvantage of these methods is that Jacobian matrices can be cumbersome
to compute and manipulate, particularly when the number of DM actuators is large.
Recently, we proposed a new class of focal-plane wavefront control algorithms that
utilize gradient-based optimization with algorithmic differentiation to compute wave-
front control solutions while avoiding the explicit computation and manipulation of
Jacobian matrices entirely. In simulations using a coronagraph design for the pro-
posed Large UV/Optical/Infrared Surveyor, we showed that our approach reduces
overall CPU time and memory consumption compared to a Jacobian-based algo-
rithm. Here, we expand on these results by implementing the proposed algorithm
on the High-contrast Imager for Complex Aperture Telescopes tested at the Space
Telescope Science Institute and present initial experimental results, demonstrating
contrast suppression capabilities equivalent to Jacobian-based methods.
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1 Introduction
Future space coronagraphs attempting to image and characterize Earth-like planets around
nearby solar-type stars will rely critically on closed-loop wavefront sensing and control
(WFS&C) using deformable mirrors (DMs) to mitigate optical aberrations in the primary beam
path. These aberrations, primarily mid-spatial frequency wavefront errors and optical misalign-
ments in the telescope and coronagraph optics, give rise to a speckle floor that is coherent with
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the star and evolves slowly over time in response to miniscule drifts in the thermal and mechani-
cal state of the observatory. If uncorrected, the speckle floor overwhelms the faint image of the
orbiting planet, which is expected to be 1010 times fainter than the host star at 0.1 arcseconds of
separation or less at visible wavelengths.1

The current state-of-the-art wavefront control algorithms, stroke minimization (SM)2 and
electric field conjugation (EFC),3 compute DM command solutions using a first-order approxi-
mation of the focal-plane electric field in an optimal control framework. In both cases, the opti-
mal DM update is written down in closed form as the solution of a linear system of equations
constructed from a Jacobian matrix that describes the influence of each DM actuator on the focal-
plane electric field.

Until recently, little attention has been paid to the computational demands of SM and EFC.
The complexity of SM and EFC is dominated by the cost of computing and manipulating the
Jacobian matrix, whose size is proportional to the product of the number of DM actuators and
number of dark-zone pixels. In broadband imaging, this is compounded by the requirement to
compute a separate Jacobian for each controlled wavelength. The Jacobian is most often model-
based, in which case an optical diffraction model of the coronagraph is evaluated repeatedly to
predict the focal-plane influence of each actuator. Moreover, the Jacobian is a linearization of
the true, nonlinear behavior of the DMs and must be recalculated periodically as the state of the
DMs evolves over time.

As direct imaging missions demand DMs with ever-higher actuator density to enable wider
and wider search areas, computational aspects will inevitably become a point of concern from a
systems engineering standpoint. In on-orbit WFS&C, all sensing and control computations are
processed by the flight computer; conversely, in ground-in-the-loop scenarios, raw data is com-
municated to a ground-based computing node that calculates the DM correction and relays the
correction back to the observatory. Though each approach has tradeoffs, a major advantage of
on-orbit WFS&C is the ability to update DM commands more frequently without relying on the
continuous availability of a communication link with the ground station. On-orbit WFS&C can
help to relax observatory-level wavefront stability requirements by enabling the high-contrast
dark zone to be maintained over shorter time intervals. Successful deployment of an on-orbit
architecture is predicated on the availability of sufficient computational resources; however, radi-
ation-hard, space-qualified computing hardware lags behind conventional hardware by decades
and is extremely resource-limited. This poses a substantial computation capability gap if the
current algorithms are expected to be deployed on-orbit on a future direct imaging mission, such
as NASA’s planned Habitable Worlds Observatory (HWO).

As a case in point, the current state-of-the-art testbed for coronagraph laboratory demon-
strations, the decadal survey testbed (DST) at NASA’s Jet Propulsion Laboratory, has success-
fully demonstrated 3.82 × 10−10 instrumental contrast over a 10% fractional bandpass within an
annular dark zone extending from 3 λ0∕D to 8 λ0∕D, where λ0 is the central imaging wavelength
and D is the diameter of the telescope aperture, using two DMs each with 48 × 48 actuators.4

The baseline requirements for an HWO-like mission will be considerably steeper, using the
Large UV/Optical/Infrared Surveyor (LUVOIR) and Habitable Exoplanet Observatory (HabEx)
flagship mission concepts formulated for the Astro2020 Decadal Survey5,6 as representative
reference designs. The HabEx design features two 64 × 64 DMs, and a search area with a maxi-
mal outer radius of 32 λ0∕D over a 20% bandpass—nearly double the total actuator count,
a factor of 4 increase in search radius, and a factor of two increase in control bandwidth.
Meanwhile, the LUVOIR Architecture “A” reference design includes a pair of 128 × 128

DMs and a dark zone with a 64 λ0∕D maximal outer radius over a 10% fractional bandpass
or wider. Because the number of detector pixels in the dark zone scales with the area of the
dark zone rather than its radius, these parameters correspond to an increase by a factor of
32 (Habex) and 512 (LUVOIR-A) of the worst-case Jacobian dimensionality, for each control
wavelength, compared to DST.

In recent work, we formulated an alternative wavefront control framework that iteratively
compute DM updates using gradient-based optimization techniques, which eliminates the need to
calculate and manipulate the Jacobian.7 Our approach is based in part on a numerical technique
known as algorithmic differentiation (AD),8 to calculate the gradients of the cost function for
optimal control accurately and efficiently. We described an AD-based counterpart to SM,
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which we termed AD penalty stroke minimization (AD-PSM), and compared it to SM in
simulations with a small-angle LUVOIR design. Our results indicated superior computational
efficiency with AD-PSM and comparable starlight suppression performance. While the CPU
time and memory consumption of SM grew superlinearly with actuator count, the increase in
both for AD-PSM was negligible (e.g., with 128 × 128 actuators, AD-PSM utilized 95% less
memory and CPU time), suggesting that iterative methods are a promising alternative to
Jacobian-based techniques for on-orbit WFS&C with high actuator counts and large dark zones.

In this paper, we report on the first experimental demonstration of AD-PSM as well as an
AD-based counterpart to the EFC algorithm, termed AD-EFC, using the High-contrast Imager
for Complex Aperture Telescopes (HiCAT) at the Space Telescope Science Institute in Baltimore,
Maryland. We benchmark the contrast performance of AD-PSM and AD-EFC as a function of
several key parameters including regularization and the termination tolerance of the nonlinear
optimizer, and compare it to SM and EFC.

This paper is structured as follows. In Sec. 2, we review concepts from our earlier work,
including AD and the mathematical formulation of AD-PSM and AD-EFC. In Sec. 3, we provide
an overview of HiCAT and discuss our experimental setup, including algorithm implementation
details that are pertinent to our demonstration. In Sec. 4, we present and discuss our experimental
results. Finally, in Sec. 5, we provide our conclusions and briefly describe our planned future
work.

1.1 Notation
In this paper, our principal concern is with algorithms that operate on discrete vector-valued
quantities, which are represented in boldface. Many of these quantities vary as a function of
control iteration, and are denoted with the subscript k. These may be truly discrete, such as the
vector ak of DM actuator command updates, or may represent discretizations of functions of
continuous spatial variables, such as electric fields. We denote x as a column vector, its transpose
xT as a row vector, and kxk as its Euclidean length. For complex-valued quantities, † denotes the
Hermitian transpose. Scalar quantities are denoted in ordinary (i.e., non-boldface) typographic
weight.

By convention, the derivative of a scalar with respect to a column vector is a row vector, i.e.
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2 Wavefront Control Using Algorithmic Differentiation
The goal of the WFS&C loop in coronagraphy is to drive starlight within the dark zone toward
zero over time so that a faint orbiting companion becomes detectable against the reduced starlight
background. Each iteration of the WFS&C loop, indexed by the integer k, consists of two steps:

(1) an estimation step, in which an estimate Êab;k of the true aberrated electric field Eab;k is
formed within the dark zone from focal-plane intensity measurements, and (2) a control step,
in which the DM correction is updated to reduce the energy in Eab;k, as shown in Fig. 1. In this
paper, we focus principally on the control step.

Modern model-based wavefront control algorithms find the DM correction update ak by

minimizing some cost function Jkðak; Êab;kÞ with respect to ak. Usually, Jk is constructed to
trade off between minimizing starlight and minimizing the size of the correction, which helps
to regularize the problem and stabilize the solution. In general, the true relationship between
the starlight in the dark zone and the DM correction is highly nonlinear and nonconvex, owing
to the fact that the DMs impart phase-only corrections of the form expfiϕDMg at or near the
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coronagraph entrance pupil. However, when the optical aberrations are small, we can approxi-
mate the true electric field in the coronagraph entrance pupil with a first-order Taylor series
expansion about a small update to the DM commands. In this case, the corrected electric field
in the dark zone has the form

EQ-TARGET;temp:intralink-;e003;114;501EDZ;kðakÞ ≈ Êab;k þ EDM;kðakÞ; (3)

where Êab;k is the estimate of the aberrated dark-zone electric field produced by the estimation
step, and EDM;k is the change in electric field resulting from the update to the DM correction.
We can also write EDZ;k in the form

EQ-TARGET;temp:intralink-;e004;114;435EDZ;kðakÞ ¼ Êab;k þGkak; (4)

where Gk ≜ ∂EDZ;k∕∂ak is the Jacobian matrix with dimensions Npix × Nact, Npix is the number
of dark-zone pixels, and Nact is the total number of controllable DM actuators. The intensity
from the corrected electric field, integrated over the dark zone, can be written in terms of the
Jacobian as

EQ-TARGET;temp:intralink-;e005;114;360kEDZ;kðakÞk2 ¼ kGkakk2 þ kÊab;kk2 þ 2RefÊ†

ab;kGkgak: (5)

This is a quadratic function of ak, meaning that under this approximation, there exists
a unique, optimal DM correction that minimizes the dark-zone starlight.

SM and EFC utilize the relationship in Eq. (5) to derive closed-form expressions for this
optimal correction in terms of Gk that can be evaluated by solving a linear system of dimension
Nact × Nact, as illustrated in Fig. 2. As we discuss in Appendix B, this is equivalent to minimizing
the cost function using Newton’s method with an exact Hessian matrix. Alternatively, it is pos-
sible to find the DM correction by minimizing the cost function Jk with respect to ak iteratively,
rather than analytically, using gradient-based nonlinear optimization as shown in Fig. 3.

Fig. 2 In EFC and SM, the Jacobian matrix is precomputed using a computer model of the corona-
graph to predict the effect of an update to each of the Nact DM actuators individually on the dark-
zone electric field, here represented by the Kronecker δ functions δn, where δn½i � ¼ 1 if i ¼ n and
zero otherwise. The Jacobian Gk and the estimate of the aberrated dark-zone electric field Êab;k

together are used to construct a linear system of equations whose solution is the desired DM
update a�k . We show in Appendix B that this is equivalent to minimizing the wavefront control cost
function using Newton’s method.

Fig. 1 Closed-loop coronagraphic WFS&C uses images from the science camera, rather than an
external wavefront sensing instrument, to estimate the electric field from the host star within the
dark zone and drive it toward zero. Model-based WFS&C algorithms use a numerical model of
the coronagraph to solve an inverse problem for the unknown electric field and corresponding
DM correction, respectively.
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To do so eliminates the need to calculate the Jacobian matrix, but requires a way of calculating
the gradient vector ∂Jk∕∂ak. Reverse-mode algorithmic differentiation (RMAD) provides a way
of doing so that is both computationally efficient and accurate, in the sense that the derivatives
computed by RMAD are accurate to machine precision and do not utilize finite-difference
approximations.8 The basic principle of RMAD is that any function that can be written down
as a sequence of differentiable operations, called the forward model, can be transformed mecha-
nistically to construct a related function, called the adjoint model, that evaluates the derivative of
the forward model with respect to any of the intermediate variables encountered during its evalu-
ation, as well as its inputs. Figure 4 illustrates this procedure for the wavefront control cost func-
tion Jk. We refer the reader to our earlier work for a more comprehensive discussion of the
principles of RMAD and its application to wavefront control.7

2.1 Stroke Minimization: From Lagrange Multipliers to Penalty Method
SM finds the smallest DM correction that achieves a desired level of stellar intensity integrated
over the dark zone, denoted by Itarget;k.

2 It is solved by finding the stationary point of the
Lagrangian function

EQ-TARGET;temp:intralink-;e006;117;85LSM;k ¼ kakk2 þ μkðkEDZ;kðakÞk2 − Itarget;kÞ; (6)

Fig. 3 Our AD-based wavefront controllers AD-PSM and AD-EFC use RMAD to differentiate the
wavefront control cost function Jk with respect to the DM correction update ak , yielding the gradient
vector ∂Jk∕∂ak evaluated at the current iterate ank . A nonlinear optimization algorithm calculates a
new iterate anþ1

k that reduces the value of the cost function, i.e., Jk ðanþ1
k Þ ≤ Jk ðank Þ. This procedure

is repeated until the gradient becomes sufficiently small, indicating that the solution a�k is at or near
a local minimum of the cost function. A starting guess for the solution a0k as well as the aberrated
electric field Êab;k are the input parameters.

Fig. 4 The forward model for the wavefront control problem maps DM command updates ak to a
scalar cost function Jk . The DM command vector is split into independent command vectors a1;k
and a2;k for the pupil-plane and out-of-pupil DM, respectively. These are mapped onto DM surfaces
s1;k and s2;k using the model in Appendix C, and propagated through an end-to-end coronagraph
model to predict the resulting change in dark-zone electric field EDM;k . Reverse-mode AD trans-
forms the forward model into an adjoint model that backpropagates the partial derivatives of Jk with
respect to each intermediate variable a1;k , a2;k , s1;k , s2;k , and EDM;k in reverse order, starting from
the output on the right. The derivatives with respect to the individual DM command vectors a1;k and
a2;k are concatenated to form the full gradient vector for optimization.
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i.e., a point such that ∂LSM;k∕∂a 0
k ¼ 0, where ak is the DM actuator command update, EDZ;k is

the corrected electric field in the dark zone, a 0
k ≜ ½aTk μk�T , and μk is the Lagrange multiplier.

Because this stationary point is a saddle point, it cannot be reached by minimizing LSM;k with
respect to a 0

k. Instead, one chooses a fixed starting value for the Lagrange multiplier, μ0k, and
minimizes LSM;k with respect to ak to find a corresponding DM solution a0k. If the constraint
kEDZ;kða0kÞk2 ≤ Itarget;k is not satisfied, a larger value μ1k > μ0k is selected and this procedure
is repeated. For any fixed value of μnk , the minimum of Eq. (6) is given in closed form in terms
of the Jacobian matrix Gk:

EQ-TARGET;temp:intralink-;e007;114;634ank ¼ −
�
RefG†

kGkg þ
1

μnk
I

�
−1
RefG†

kÊab;kg; (7)

where I is the identity matrix and Êab;k is the estimate of the aberrated electric field.
AD-PSM has the same goal, but instead iteratively minimizes the cost function

EQ-TARGET;temp:intralink-;e008;114;570JPSM;k ¼ kakk2 þ ηkðkEDZ;kðakÞk2 − Itarget;kÞ2; (8)

where ηk is a parameter that encodes the relative importance of minimizing actuator stroke and
driving the integrated intensity toward the target value. The minimum of JPSM;k with respect to ak
is coincident with the stationary point of LSM;k,

9 meaning that the DM solutions obtained by SM
and AD-PSM are, in principle, identical. In this paper, we choose ηk in each WFS&C iteration as

EQ-TARGET;temp:intralink-;e009;114;496ηk ¼
η00

ðkÊab;kk2 − Itarget;kÞ2
; (9)

where η00, known as the penalty parameter, is a constant set by the experimenter. The denom-

inator ðkÊab;kk2 − Itarget;kÞ2 scales the cost function to be invariant to the energy in the dark-zone
electric field, which helps in practice to obtain good solutions in all WFS&C iterations as Êab;k

gradually converges toward zero.

2.2 Electric Field Conjugation
EFC attempts to drive the dark zone electric field toward zero, with Tikhonov regularization to
mitigate ill-conditioning caused by the presence of actuators that are completely or partially
obscured by pupil features. Its cost function for a single correction wavelength is given as

EQ-TARGET;temp:intralink-;e010;114;346JEFC;k ¼ kEDZ;kðakÞk2 þ kΓkakk2; (10)

where Γk is the Tikhonov regularization matrix. In the most common case, one chooses
Γk ¼ αkI, making EFC identical to SM with a fixed Lagrange multiplier μk ¼ 1∕α2k. For this
case, its solution can be obtained using Eq. (7). The general solution for the Jacobian-based
formulation of EFC is given as

EQ-TARGET;temp:intralink-;e011;114;272a�k ¼ −ðRefG†

kGkg þ ΓT
kΓkÞ−1RefG†

kÊab;kg: (11)

In AD-EFC, one iteratively minimizes a scaled version of the EFC cost function

EQ-TARGET;temp:intralink-;e012;114;234J 0
EFC;k ¼

1

kÊab;kk2
JEFC;k: (12)

Similarly to AD-PSM, the scaling factor 1∕kÊab;kk2 makes the AD-EFC cost function invari-
ant to the energy in the dark-zone electric field to aid in obtaining numerical solutions in practice.
The RMAD adjoint model for JEFC;k is provided in Appendix D.

3 Experimental Setup
In this section, we provide an overview of the HiCAT testbed and provide details about the
implementation of AD-PSM and AD-EFC, the reference Jacobian-based implementations of
SM and EFC, and the electric field estimation algorithm used in the estimation step of the
WFS&C loop.
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3.1 HiCAT Testbed
HiCAT is a testbed dedicated to technology demonstrations for coronagraphy on segmented-
aperture space observatories, with the intent of being directly traceable to a future HWO-like
mission.10–17 These technologies include Lyot coronagraphy, high-order WFS&C for generating
and stabilizing dark zones, and low-order wavefront sensing (LOWFS).18 HiCAT operates in a
mid-contrast regime (10−7 to 10−8) which approaches the limit achievable outside of a vacuum
environment. The testbed is equipped with two Boston Micromachines Kilo-DMs for high-order
sensing and control, with 952 actuators each, making it suitable for our proof-of-concept
demonstrations. One DM is placed in a plane conjugate to the HiCAT entrance pupil, while
the second DM is placed ∼300 mm farther along the optical axis, corresponding to a Fresnel
number NF ≈ 98 at a wavelength of 638 nm. This configuration enables simultaneous control of
amplitude and phase aberrations over a dark zone that extends over both halves of the image
plane. We conducted our experiments using a Thorlabs MCLS1 laser diode source, which emits
monochromatic light with a central wavelength λ0 ¼ 638 nm.

HiCAT additionally has an IrisAO segmented DM with 37 hexagonal segments, each with
controllable piston/tip/tilt, to act as a telescope pupil simulator and to inform experimental efforts
devoted to segment-level tolerancing and stabilization.19,20 Figure 5 shows a simplified system
layout of HiCAT, including the primary imaging beam path as well as several additional beam
paths used by the LOWFS and metrology subsystems.

Our experiments on HiCAT utilized a classical Lyot coronagraph (CLC) design with a
hexagonal entrance pupil mask designed to mask the extreme edges of the IrisAO, a circular
focal-plane mask, and a circular Lyot stop. Figure 6 shows an overlay of the CLC pupil masks
along with a simulated stellar point-spread functions (PSFs). Figure 7 shows example experi-
mental PSFs obtained before and after closed-loop WFS&C using SM, along with the corre-
sponding DM commands.

3.2 Algorithm Implementation
We developed a differentiable model of HiCAT using Python, including a hand-derived adjoint
model. To facilitate testing, our model was comprised of several sub-modules each with its own
individual forward and adjoint models.

1. A model to compute the DM surface resulting from a given set of actuator commands
using a fast convolutional representation. This is described in further detail in
Appendix C.

Fig. 5 Simplified, partially-unfolded layout of the HiCAT testbed. The elements encountered by the
primary imaging beam path are highlighted in bold. DM1 and DM2 indicate the in-pupil and out-of-
pupil DMs, respectively. Our experiments utilized a coronagraph configuration in which the apod-
izer is replaced with a flat mirror (see Sec. 3.1).
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2. A model to apply the phase corrections imparted by the in-pupil DM (DM1) and out-of-
pupil DM (DM2), including the free-space propagation between the two DMs.

3. A model to propagate the electric field after DM correction through the HiCAT CLC.
We use the semi-analytical Lyot coronagraph model originally described in Ref. 21.

We refer the reader to our earlier work for detailed descriptions of the operations in the
forward and adjoint models for the latter two sub-modules.7 A pre-existing numerical model
of HiCAT based on the POPPY framework22,23 served as a reference for calibrating our differ-
entiable model.

3.2.1 Optimization algorithm

We used the limited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS) algorithm,9 as
implemented in the SciPy package,24 as the optimization algorithm for AD-PSM and AD-EFC.
L-BFGS is a quasi-Newton algorithm, meaning that it uses the gradient vectors collected during

(a) (b)

(d) (e)

(c)

Fig. 7 Experimental on-axis images from HiCAT. (a) Non-coronagraphic image, (b) coronagraphic
image prior to theWFS&C loop, (c) coronagraphic image after 80 iterations of SM, and correspond-
ing actuator commands for the in-pupil DM (d), and out-of-pupil DM (e). In panels (b) and (c), the
geometrical edge of the focal-plane mask (FPM) with radius 3.34 λ0∕DLS is shown as well as the
inner and outer edges of the dark zone at 5.8 λ0∕DLS to 9.8 λ0∕DLS, respectively, where DLS is
the Lyot stop diameter and λ0 ¼ 638 nm.

(b) (c)(a)

Fig. 6 (a) Overlay of HiCAT pupil masks projected onto the in-pupil DM plane, including the
reflective area of the DM, the IrisAO segmented aperture, the entrance pupil mask (with the same
geometry, but slightly undersized relative to the IrisAO) and the Lyot stop. (b) Simulated and
(c) experimental coronagraphic PSFs with outline of the geometrical edge of the focal-plane mask.
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optimization to approximate the inverse Hessian matrix H−1
k of second derivatives, involving

substantially less effort than Newton’s method with an exact Hessian (see Appendix B).
All numerical optimization algorithms have a termination criterion that determines when

the algorithm has reached a location in the parameter space that is sufficiently close to a local
optimum. In the L-BFGS implementation used by SciPy, the termination criterion is set by a
tolerance parameter ε defined as the magnitude of the largest element of the gradient vector.
As ε → 0, L-BFGS carries out a greater number of optimization iterations to terminate closer
to the minimum. Choosing a larger value of ε reduces total computation with the tradeoff of
a less-optimal DM solution. However, as our experiments showed, in certain instances this can
help to regularize the solution by terminating before L-BFGS converges to an overly aggressive
DM correction that would otherwise make the WFS&C loop unstable.

The termination criterion presents an additional consideration not present in SM and EFC
which exactly minimize their respective cost functions in each WFS&C iteration. The value of
the tolerance parameter ε should be chosen to optimally trade-off between accuracy and com-
putational effort. We discuss this in further detail below.

3.3 Estimation Algorithm
We used the pairwise probe estimator3 for the estimation step in all experiments. The pairwise

estimator forms a least-squares estimate Êab;k of the focal-plane electric field Eab;k by applying a
series of P probing DM commands up to generate probing electric fields EDM;kðupÞ that interfere
with Eab;k. The data vector for the least-squares estimate is formed by differencing the images
resulting from EDM;kðupÞ and EDM;kð−upÞ. The estimate of them’th pixel in the dark zone is then
found by finding the least-squares solution of the system

EQ-TARGET;temp:intralink-;e013;117;4562
6664
Iþk;1½m� − I−k;1½m�

..

.

Iþk;P½m� − I−k;P½m�

3
7775 ¼

2
6664
RefEDM;kðu1Þg½m� ImfEDM;kðu1Þg½m�

..

. ..
.

RefEDM;kðuPÞg½m� ImfEDM;kðuPÞg½m�

3
7775
�
RefEab;kg½m�
ImfEab;kg½m�

�
; (13)

where I�k;p ≜ jEab;k þ EDM;kð�upÞj2.
We generated four DM probe functions up that were optimized to produce probing fields of

the form

EQ-TARGET;temp:intralink-;e014;117;350Ep
DM;k ¼ sgnfθxg exp

�
iπ

p − 1

4
sgnfθxg

�
; (14)

where p ∈ f1;2; 3;4g and sgnfθxg is the sign of the focal-plane x coordinate. These probing
fields, which have anti-Hermitian symmetry, correspond to purely real commands applied to
the in-pupil DM, which we can calculate via a regularized least-squares approach for each p,

EQ-TARGET;temp:intralink-;e015;117;277arg min
uPk

kG1;ku
p
k − Ep

DM;kk2 þ α2probekupkk2; (15)

where α2probe is the Tikhonov regularization term for the probe calculation andG1;k is the Jacobian

for the in-pupil DM. This is identical to the EFC problem in Eq. (10) but with the probing field

Ep
DM;k on the right-hand side instead of −Êab;k, and has the solution

EQ-TARGET;temp:intralink-;e016;117;200upk ¼ ðRefG†

1;kG1;kg þ α2probeIÞ−1RefG†

1;kE
p
DM;kg: (16)

For the experiments with SM and EFC, we applied Eq. (16) to compute probe commands for
pairwise probe estimation. For experiments with AD-PSM and AD-EFC, we iteratively solved
Eq. (15) using the AD-EFC framework. In all cases, we set the Tikhonov regularization param-
eter for probe generation as α2probe ¼ 0.7; for the iterative probes, we set the optimizer tolerance to

ε ¼ 10−5. Figure 8 shows the probe commands up along with the corresponding magnitude and
phase of EDM;kðupÞ.
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4 Experimental Results and Discussion
We conducted a series of experiments to compare the contrast performance of AD-PSM and
AD-EFC relative to SM and EFC, respectively. All experiments used an annular control region
extending from 5.8 λ0∕DLS to 9.8 λ0∕DLS, where λ0 ¼ 638 nm is the central wavelength of the
Thorlabs MCLS1 laser diode and DLS is the Lyot stop diameter. Each experiment consisted
of 80 WFS&C iterations. For each experiment, we computed the median and 10th and 90th
percentile values of the spatially averaged dark-zone contrast values for the final 50 iterations,
which captured the steady-state performance of the WFS&C loop with each algorithm after con-
verging to deepest-possible contrast. Figures 9 and 10 show example contrast vs. iteration time
series with AD-PSM/SM and AD-EFC/EFC, respectively, as well as the PSF from the iteration
with deepest contrast using AD-PSM and AD-EFC. In both cases, the convergence properties of
AD-PSM and AD-EFC are nearly identical to their Jacobian-based counterparts, validating our
proposed approach.

For SM and AD-PSM, we chose Itarget;k ¼ 0.5kÊab;kk2 as the contrast target, i.e., a factor of
two improvement iteration-over-iteration in spatially integrated dark zone contrast. For the
Lagrange multiplier line search in SM, we let μnþ1

k ¼ 1.3μnk . For AD-PSM, we tested combi-
nations of the penalty parameter η00 ∈ f10;100;1000g and the nonlinear optimization conver-
gence tolerance ε ∈ f10−2; 10−3; 10−4g. We determined these values based on simulations and
prior WFS&C experiments on HiCAT.

For EFC and AD-EFC, we selected the Tikhonov regularization matrix as Γk ¼ αkI,
with α2k ∈ f10−2; 10−3; 10−4g for the first 30 WFS&C iterations and α2k ¼ 10−1 thereafter.
We determined through previous experiments with EFC that maintaining an aggressive αk value
throughout the experiment was detrimental to the stability of the control loop after reaching
the steady-state regime. For AD-EFC, we used the same set of ε values as AD-PSM.

Fig. 8 The probe commands up for pairwise estimation were optimized so that the resultant
dark-zone electric field EDM;k ðupÞ ¼ sgnfρxgexpfiπðp − 1Þsgnfρxg∕4g, as described in Sec. 3.3.
The inner and outer edges of the dark zone are also shown for reference. The probe commands
are close to the inverse Fourier transform of the dark zone geometry (an annulus), modulated by a
horizontal sinusoid whose phase angle is proportional to the desired piston phase, and projected
onto the DM actuator coordinates. Only the pupil-plane DM is modulated.
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For AD-EFC and AD-PSM, we compared the value of the cost function for two different
starting guesses for the DM correction: a0k ¼ a�k−1, i.e., the solution of the previous WFS&C
iteration, and a0k ¼ 0. The starting guess with the lower of the two cost function values was then
selected. In all cases a0k ¼ 0 was ultimately chosen as the starting guess.

Figures 11 and 12 show the statistics of the post-convergence spatially averaged dark-zone
contrast achieved with AD-PSM and AD-EFC for each combination of regularization (η00 or αk)
and optimization tolerance ε, respectively, compared to reference experiments with SM and EFC.
For all parameter combinations, AD-PSM and AD-EFC equaled the contrast performance of
SM and EFC, respectively. Moreover, we observed no strongly identifiable trends in achievable
contrast as a function of the algorithm parameters, indicating that in all cases, AD-PSM and
AD-EFC reached the contrast floor imposed by environmental instabilities. For full contrast
versus iteration curves for all experiments, we refer to Fig. 13 in Appendix A.

4.1 Discussion
Our experiments were aimed at exploring a relevant subset of the space of free parameters for
each algorithm, namely the nonlinear optimization convergence tolerance ε, the Tikhonov regu-
larization αk for AD-EFC, and the penalty parameter η00 for AD-PSM. In principle, each param-
eter affects the attainable contrast of the WFS&C loop, but in subtly different ways, which we
discuss here.

As discussed in Sec. 3.2.1, ε determines the effort that the nonlinear optimization algorithm
will expend to find a solution close to the true minimum of the cost function. A smaller value of ε
corresponds to a larger number of optimization iterations before termination, and ultimately a

Contrast vs. iteration Best iteration(a) (b)

Fig. 10 (a) Spatially averaged dark-zone contrast versus WFS&C iteration using AD-EFC with
α2k ¼ 10−2 and ε ¼ 10−4, compared to an experiment with EFC using the same value for αk .
The median, 10th, and 90th percentile of the converged datapoints are shown in green. (b) The
on-axis PSF corresponding to the iteration with deepest contrast using AD-EFC.

Best iterationContrast vs. iteration (b)(a)

Fig. 9 (a) Spatially averaged dark-zone contrast versus WFS&C iteration using AD-PSM with
η00 ¼ 10 and ε ¼ 10−4, compared to an experiment with SM. Themedian, 10th, and 90th percentile
of the final 50 iterations, representing the steady-state behavior after convergence, are shown in
green. (b) The on-axis PSF corresponding to the iteration with deepest contrast using AD-PSM.
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larger time interval between DM updates. In principle, on a system, such as HiCAT, where envi-
ronmental disturbances cause the aberrated electric field to evolve over time scales on the order of
seconds or faster, an excessive delay between the estimation step and application of the DM
correction can cause a degradation in achievable contrast. However, we observed no meaningful
degradation for smaller values of ε. In a real space-borne system, this is unlikely to be a sig-
nificant consideration because of the much greater electric field stability, and because the total
duration of each WFS&C iteration will be dominated by the exposure times needed for the
estimation step.

The value ε can also serve as an auxiliary form of regularization, by terminating the
optimization algorithm before it reaches an overly aggressive DM correction caused by a noisy
electric field estimate, insufficient regularization using αk or η00, or both. For instance, in Fig. 12,
with α2k ¼ 10−4 (rightmost panel), EFC diverged altogether whereas AD-EFC did not. On the
other hand, choosing ε too large can impose an effective contrast floor by limiting the ability of

AD-EFC vs. EFC

Fig. 12 Median, 10th percentile, and 90th percentile spatially averaged contrast values achieved
by AD-EFC (dark orange) as a function of optimizer tolerance, for three different values of the
Tikhonov regularization parameter αk . For each αk , we also ran a reference experiment with
EFC (light orange); the EFC experiment with α2k ¼ 10−4 diverged and is not shown. The contrast
versus iteration time series for the rightmost result in the left pane (α2k ¼ 10−2, ε ¼ 10−4) is illus-
trated in Fig. 10. The performance of AD-EFC was statistically equivalent to EFC for α2k ¼ 10−2 and
α2k ¼ 10−3. As discussed in Sec. 4.1, the optimizer tolerance prevented AD-EFC from diverging in
this case.

AD-PSM vs. SM

Fig. 11 Median, 10th percentile, and 90th percentile spatially averaged contrast values achieved
by AD-PSM (dark blue) as a function of optimizer tolerance, for three different values of the penalty
parameter η00, compared to SM (light blue). The contrast vs. iteration time series for the rightmost
result in the left pane (η00 ¼ 10, ε ¼ 10−4) is illustrated in Fig. 9. In all cases, the contrast perfor-
mance of AD-PSM was equivalent to that of SM within statistical uncertainty.
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the optimization algorithm to converge to appropriately strong corrections. We determined in
simulation that this was the case for ε > 10−2.

For EFC and AD-EFC, smaller values of the Tikhonov regularization αk correspond to
more aggressive correction of the electric field, with the tradeoff of increased sensitivity to small
perturbations in the estimated electric field, which reduces the stability of the WFS&C loop.
For AD-PSM and SM, the aggressiveness of the WFS&C control loop is set first and foremost
by the target contrast level Itarget;k. For SM, a smaller Itarget;k corresponds to a larger value of the
Lagrange multiplier μk, and therefore more aggressive correction (recalling from Sec. 2.2
that μk ¼ 1∕α2k). For AD-PSM, as η00 tends toward infinity, the goal of achieving the target
contrast is enforced more strongly; η00 is interpretable as tuning the aggressiveness of the
control loop up to a maximum level imposed by Itarget;k. Our experiments indicated that over
the range of values considered, the performance of the WFS&C loop was insensitive to the value
of η00.

In principle, because αk and ε have similar effects on the performance of AD-EFC,
there potentially exists a single combination of the two parameters that is optimal in terms
of contrast, or perhaps a continuum of combinations with similar performance, with a
change in αk compensated by a change to ε in the opposite direction. The same holds true
for AD-PSM.

5 Conclusions and Future Work
In this paper, we reported the first experimental demonstrations of two AD-based wavefront
control algorithms, AD-PSM and AD-EFC, using the HiCAT testbed. To within statistical uncer-
tainty, AD-PSM and AD-EFC equaled their Jacobian-based counterparts in dark-zone contrast
for all combinations of parameters that we tested. These demonstrations pave the way for future
experimental validation at higher contrast.

The analysis in our earlier work indicated that the largest computational gains are realized
for DMs with more than 64 × 64 actuators. The DMs currently in use on HiCAT have 34
actuators across the diameter of the active region or 952 actuators per DM in total, which is
comparatively low. Therefore, our goal was to validate the fundamental capability of AD-PSM
and AD-EFC to reach deep contrast, rather than to demonstrate improved computational
efficiency.

In this work and in our earlier work, we utilized the L-BFGS optimization algorithm to
minimize the wavefront control cost function because of its desirable convergence properties
compared to first-order optimization methods and low storage requirements. Despite this,
L-BFGS is known to converge slowly for poorly conditioned problems compared to methods
that utilize the exact Hessian matrix.9 However, there exist alternative methods, such as truncated
Newton algorithms, with excellent convergence properties for quadratic or nearly-quadratic
cost functions, that require only the ability to evaluate Hessian-vector products, rather than
the Hessian matrix itself.9 Hessian-vector products can be evaluated using AD in a similar
fashion to gradients. Future work will explore such methods as a potentially faster approach
than L-BFGS.

6 Appendix A: Convergence Data for All Experiments
In Sec. 4, we showed the time series of spatially averaged contrast vs. WFS&C iteration for an
AD-PSM with η00 ¼ 10 and ε ¼ 10−4 compared to an experiment with SM (Fig. 9), as well as an
AD-EFC experiment with α2k ¼ 10−2 and ε ¼ 10−4 compared to an EFC experiment with the
same value of α2k (Fig. 10). We then summarized the steady-state time series statistics (median,
10th percentile, and 90th percentile) for a series of nine AD-PSM and nine AD-EFC runs with
different combinations of ðη00; εÞ and ðα2k; εÞ, respectively (Figs. 11 and 12). In this section,
Fig. 13 shows the full time series of contrast versus iteration for all 18 AD-PSM and AD-EFC
experiments compared to their respective SM and EFC reference experiments.
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7 Appendix B: Equivalence of Jacobian-Based Solutions and
Newton’s Method

Finding solutions for EFC and SM using the Jacobian matrix is equivalent to minimizing their
respective cost functions with respect to ak using Newton’s method. Newton’s method is a sec-
ond-order optimization technique that utilizes second-derivative information about the cost

Fig. 13 Spatially averaged dark-zone contrast versus iteration for all experiments discussed in
Sec. 4 and summarized in Figs. 11 and 12. The 10th percentile, median, and 90th percentile
of the steady-state contrast values (gray region) for AD-PSM and AD-EFC are shown in green.
The AD-PSM experiment with ðη00 ¼ 10; ε ¼ 10−4Þ and the AD-EFC experiment with ðα2k ¼ 10−2;
ε ¼ 10−4Þ are also shown in Figs. 9 and 10, respectively.
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function, given by the local Hessian matrix HkðankÞ at any point ank in the DM command param-
eter space. Given an initial guess for the solution a0k, the full Newton update is given as9

EQ-TARGET;temp:intralink-;e017;117;711a1k ¼ a0k −H−1
k ða0kÞ

∂Jk
∂aTk

����
ak¼a0k

: (17)

For cost functions that are exactly quadratic, including EFC and SM, Newton’s method
converges in a single iteration.

For general numerical optimization problems, Newton’s method is rarely used in practice
because forming the Hessian matrix explicitly is expensive. On the other hand, quasi-Newton
methods, such as the BFGS algorithm or the limited-memory BFGS (L-BFGS) variant, can
approximate H−1

k using changes in ∂Jk∕∂aTk over successive optimization iterations. As a con-
sequence, they are substantially less computationally expensive. Although quasi-Newton algo-
rithms do not converge as rapidly as Newton’s method, and in particular can converge slowly
for poorly conditioned problems, they are nonetheless superior to purely first-order methods such
as steepest descent.9

As we show below, the Hessian matrix for EFC and SM has an analytic expression in
terms of the Jacobian Gk given by Hk ¼ 2ðRefG†

kGkg þ CÞ, where C is a symmetric, positive-
definite matrix given by ΓT

kΓk for EFC and I∕μnk for SM. Our approach is to replace this
full Newton iteration, requiring computation of the Jacobian, by a series of cheaper quasi-
Newton iterations instead, requiring only computation of the gradient ∂Jk∕∂aTk , which we achieve
using AD.

The cost function for the EFC algorithm described in Sec. 2 can be written in the form

EQ-TARGET;temp:intralink-;e018;117;461JkðakÞ ¼ kEDZ;kðakÞk2 þ kΓkakk2; (18)

where Γk is a regularization matrix; for SM, Γk ¼ I∕ ffiffiffiffiffi
μk

p
. For now, we will restrict our attention

to the EFC algorithm, but note that the result derived here applies equally as well to minimizing
the Lagrangian function for SM with respect to the DM correction ak.

Expanding Eq. (18) and recalling that EDZ;k ¼ Gkak þ Êab;k, the cost function has the form

EQ-TARGET;temp:intralink-;e019;117;379JEFC;kðakÞ ¼ aTk ðRefG†

kGkg þ ΓT
kΓkÞak þ 2aTk RefG†

kÊab;kg þ Ê†

ab;kÊab;k; (19)

where we use the fact that ak is purely real to discard ImfG†

kGkg. The Jacobian-based solution is
found by finding ak such that ∂JEFC;k∕∂ak vanishes. We therefore begin by writing down the
gradient:

EQ-TARGET;temp:intralink-;e020;117;308

∂JEFC;k
∂aTk

¼ 2ðRefG†

kGkg þ ΓT
kΓkÞak þ 2RefG†

kÊab;kg ¼ 0: (20)

This is a linear system of equations that we can solve for the optimal correction a�k:

EQ-TARGET;temp:intralink-;e021;117;256a�k ¼ −ðRefG†

kGkg þ ΓT
kΓkÞ−1 RefG†

kÊab;kg: (21)

The Hessian matrix is given as

EQ-TARGET;temp:intralink-;e022;117;211Hk ¼
∂2JEFC;k
∂ak∂aTk

¼ 2ðRefG†

kGkg þ ΓT
kΓkÞ: (22)

Since both terms in Hk are positive definite, Hk is positive definite as well, confirming that
the solution is a minimum of the cost function.

We will now show that the solution a�k obtained above is the same as the solution obtained by
applying a single iteration of Newton’s method to the EFC cost function. Let a0k be an initial
guess for the solution. Newton’s method produces an iterate of the form9

EQ-TARGET;temp:intralink-;e023;117;112a1k ¼ a0k −H−1
k
∂JEFC;k
∂aTk

����
ak¼a0k

: (23)
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Combining Eqs. (20) and (22)

EQ-TARGET;temp:intralink-;e024;114;724

∂JEFC;k
∂aTk

����
ak¼a0k

¼ Hka0k þ 2RefG†

kÊab;kg: (24)

Inserting back into Eq. (23)

EQ-TARGET;temp:intralink-;e025a;114;671a1k ¼ a0k −H−1
k ðHka0k þ 2RefG†

kÊab;kgÞ; (25a)

EQ-TARGET;temp:intralink-;e025b;114;633¼ a0k −H−1
k Hka0k − 2H−1

k RefG†

kÊab;kg; (25b)

EQ-TARGET;temp:intralink-;e025c;114;613

¼ a0k − a0k − 2H−1
k RefG†

kÊab;kg; (25c)

EQ-TARGET;temp:intralink-;e025d;114;592

¼ − 2H−1
k RefG†

kÊab;kg: (25d)

Inserting the definition of the Hessian matrix from Eq. (22), we see that the Newton iterate a1k is
identical to the analytical solution in Eq. (21)

EQ-TARGET;temp:intralink-;e026a;114;559a1k ¼ −2½2ðRefG†

kGkg þ ΓT
kΓkÞ�−1 RefG†

kÊab;kg; (26a)

EQ-TARGET;temp:intralink-;e026b;114;521

¼ −ðRefG†

kGkg þ ΓT
kΓkÞ−1 RefG†

kÊab;kg; (26b)

EQ-TARGET;temp:intralink-;e026c;114;500¼ a�k: (26c)

As we described earlier, the same result holds if minimizing LSM;k in Sec. 2.1 with respect to ak.

8 Appendix C: Fast Convolutional DM Model
Consider a DM with NA actuators along each side (i.e., Nact ¼ N2

A) whose surface sðx; yÞ can be
modeled as a linear superposition of identical influence functions fðx; yÞ

EQ-TARGET;temp:intralink-;e027;114;424sðx; yÞ ¼
XNA

m¼1

XNA

n¼1

am;nfðx − xm; y − ynÞ: (27)

For fixed actuator spacing along the horizontal and vertical directions, we can rewrite the
above summation as a convolution between a weighted Dirac comb function and the influence
function

EQ-TARGET;temp:intralink-;e028;114;345sðx; yÞ ¼ fðx; yÞ �
XNA

m¼1

XNA

n¼1

am;nδðx − xm; y − ynÞ: (28)

Fourier transforming both sides transforms the convolution operation into a multiplication:

EQ-TARGET;temp:intralink-;e029a;114;289Ffsðx; yÞg ¼ Fffðx; yÞg
XNA

m¼1

XNA

n¼1

am;nFfδðx − xm; y − ynÞg; (29a)

EQ-TARGET;temp:intralink-;e029b;114;235

¼Fffðx; yÞg
XNA

m¼1

XNA

n¼1

am;n expf−i2πðxmfx þ ynfyÞg: (29b)

We define ~sðfx; fyÞ ≜ Ffsðx; yÞg and ~fðfx; fyÞ ≜ Fffðx; yÞg:

EQ-TARGET;temp:intralink-;e030;114;198s̃ðfx; fyÞ ¼ f̃ðfx; fyÞ
XNA

m¼1

XNA

n¼1

am;n expf−i2πðxmfx þ ynfyÞg: (30)

We next define the discretized surface and influence function arrays ~s and ~f such that

EQ-TARGET;temp:intralink-;e031a;114;140s̃½p; q� ¼ s̃ðpΔfx; qΔfyÞ; (31a)

EQ-TARGET;temp:intralink-;e031b;114;104f̃½p; q� ¼ f̃ðpΔfx; qΔfyÞ; (31b)

so that
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EQ-TARGET;temp:intralink-;e032;117;736s̃ ¼ f̃ ∘
XNA

m¼1

XNA

n¼1

am;n expf−i2πðxmfx þ ynfyÞg; (32)

where ∘ denotes element-wise multiplication. Finally, we define the vectors of actuator center
coordinates xc and yc such that xc½m� ¼ xm and yc½n� ¼ yn, as well as the array of actuator
commands A for which A½m; n� ¼ am;n

EQ-TARGET;temp:intralink-;e033a;117;663

s̃½p; q� ¼ f̃½p; q� ∘
XNA

m¼1

XNA

n¼1

A½m; n� expf−i2πðxc½m�fx½p� þ yc½n�fy½q�Þg; (33a)

EQ-TARGET;temp:intralink-;e033b;117;609

¼ f̃½p; q� ∘
XNA

m¼1

expf−i2πxc½m�fx½p�g
XNA

n¼1

A½m; n� expf−i2πyc½n�fy½q�g: (33b)

We can write this more succinctly as the following sequence of element-wise and matrix products

EQ-TARGET;temp:intralink-;e034;117;571s̃ ¼ f̃ ∘ ðexpf−i2πfxxTc gA expf−i2πycfTygÞ; (34)

where exponentiation is performed element-wise and abT denotes the outer product of the
vectors a and b.

The term in the parentheses is more commonly referred to as the matrix Fourier transform21

or matrix triple product Fourier transform25 of A, which we denote as follows:

EQ-TARGET;temp:intralink-;e035;117;497MFTfA; xc; yc; fx; fyg ≜ expf−i2πfxxTc gA expf−i2πycfTy g; (35)

yielding

EQ-TARGET;temp:intralink-;e036;117;460s̃ ¼ f̃ ∘ MFTfA; xc; yc; fx; fyg: (36)

The final step is to compute an inverse discrete Fourier transform to obtain the desired dis-
crete DM surface s, which is carried out most efficiently using the inverse fast Fourier transform,
yielding the final result

EQ-TARGET;temp:intralink-;e037;117;398s ¼ IFFTff̃ ∘ MFTfA; xc; yc; fx; fygg: (37)

For DMs whose active actuators are a subset of the NA × NA grid modeled above, only the
elements of A corresponding to active actuators are set to nonzero values.

8.1 C.1 Adjoint Model
The algorithm described in the previous section computes the DM surface resulting from a two-
dimensional array of actuator commands A, under the assumptions that the influence function is
identical across all actuators and that the surface can be approximated as a linear superposition
of the actuator influence functions. In the context of gradient-based nonlinear optimization
using RMAD, we can derive an adjoint model for this algorithm that computes the derivative
A ≜ ∂J∕∂AT for some scalar cost function J, given the derivative s with respect to the surface s.

To begin, we break the forward model into the following sequence:

EQ-TARGET;temp:intralink-;e038a;117;238Ã ¼ MFTfA; xc; yc; fx; fyg; (38a)

EQ-TARGET;temp:intralink-;e038b;117;200s̃ ¼ f̃ ∘ Ã; (38b)

EQ-TARGET;temp:intralink-;e038c;117;181s ¼ IFFTfs̃g: (38c)

This leads to the following adjoint model, following the RMAD adjoint variable rules in Refs. 7
and 26:

EQ-TARGET;temp:intralink-;e039a;117;151s̃ ¼ FFTfsg; (39a)

EQ-TARGET;temp:intralink-;e39b;117;115Ã ¼ f̃� ∘ s̃; (39b)

EQ-TARGET;temp:intralink-;e039c;117;94A ¼ IMFTfÃ; fx; fy; xc; ycg; (39c)

where � denotes element-wise complex conjugation and IMFT denotes the inverse matrix Fourier
transform:
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EQ-TARGET;temp:intralink-;e040;114;736IMFTfÃ; fx; fy; xc; ycg ≜ expfi2πxcfTx gÃ expfi2πfyyTc g: (40)

Combining these expressions, the adjoint model is then

EQ-TARGET;temp:intralink-;e041;114;702A ¼ IMFTff̃� ∘ FFTfsg; fx; fy; xc; ycg: (41)

9 Appendix D: Adjoint Model for EFC Cost Function
In Sec. 2.2, we describe the cost function for the EFC algorithm for a single correction wave-
length. Here, we derive its RMAD adjoint model, which computes the derivative ∂JEFC;k∕∂EDM;k.

We begin by writing the cost function as a series of operations evaluated sequentially:

EQ-TARGET;temp:intralink-;e042a;114;606EDZ;k ¼ EDM;k þ Êab;k; (42a)

EQ-TARGET;temp:intralink-;e042b;114;568JEDZ;k
¼ kEDZ;kk2; (42b)

EQ-TARGET;temp:intralink-;e042c;114;548ck ¼ Γkak; (42c)

EQ-TARGET;temp:intralink-;e042d;114;530Jc;k ¼ kckk2; (42d)

EQ-TARGET;temp:intralink-;e042e;114;511JEFC;k ¼ JEDZ;k
þ Jc;k: (42e)

We now apply the RMAD gradient rules7,26 to each step in reverse order to derive the adjoint
model, letting x ≜ ∂Jk∕∂xT for any variable x:

EQ-TARGET;temp:intralink-;e043a;114;480JEFC;k ¼ 1; (43a)

EQ-TARGET;temp:intralink-;e043b;114;443JEDZ;k
¼ Jc;k ¼ JEFC;k; (43b)

EQ-TARGET;temp:intralink-;e043c;114;423ck ¼ 2ckJc;k; (43c)

EQ-TARGET;temp:intralink-;e043d;114;404ak ¼ ΓT
k ck; (43d)

EQ-TARGET;temp:intralink-;e043e;114;385ĒDZ;k ¼ 2EDZ;kJEDZ;k
; (43e)

EQ-TARGET;temp:intralink-;e043f;114;365EDM;k ¼ EDZ;k: (43f)

Combining and simplifying, we see that the desired gradient is given as

EQ-TARGET;temp:intralink-;e044;114;345EDM;k ¼ 2ΔEk: (44)

This gradient is passed to the next block of the adjoint model, which in this case is the adjoint
model for propagation through the coronagraph, which, referring to Fig. 4, evaluates the deriv-
atives of JEFC;k with respect to the surfaces s1;k and s2;k, respectively. We refer to our earlier work
for a derivation of the coronagraph propagation adjoint model.7
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