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Abstract. The European Space Agency’s Gaia spacecraft has been operating in L2 ever since
its launch in December 2013 with a payload that includes 106 scientific charge-coupled devices
(CCDs). Due to the predicted radiation environment at the pre-flight testing stage in addition to
the high level of accuracy demanded by the science objectives, the non-ionizing energy loss
(NIEL) damage on the detectors was identified as a major factor that could affect the science
goals of the mission. Here, we present the analysis of an extended set of charge calibration data,
taken up to almost six years after launch. It is found that the rate of radiation damage accumu-
lation by the CCDs has not differed significantly from previous results. While the parallel and
serial CTI measure an increase in time, the trap defect landscape is still dominated by the pre-
flight defects rather than the radiation-induced traps. CCD devices that were predicted to have
a lower NIEL dose measure comparatively larger rates of CTI increase. In addition to this,
thicker devices have been measured to have lower serial CTI values compared to thinner
devices. The initial parallel CTI values have also been found to be dependent on manufacture
year. © 2022 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JATIS.8.1
.016003]
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1 Introduction

The Gaia spacecraft is an European Space Agency (ESA) medium-class mission from the
Horizon 2000 Plus program, successfully launched in December 2013. Over its mission, it will
observe and take measurements of more than one thousand million stars with the goal of making
the largest catalog of astronomical objects in the Milky Way. Rotating with a period of ∼6 h,
Gaia scans the sky with its two optical telescopes, making repeated observations of stars, gal-
axies, quasars, and other objects that are autonomously detected onboard. In addition to astro-
metric parameters, Gaia data releases (DRs) contain (or will contain) photometric results, low-
resolution spectra, colors, and astrophysical parameters of most stars in addition to radial veloc-
ities and medium-resolution spectra of a subset of objects.1,2 As of the time of this publication,
two complete DRs and an Early third DR have already been released based on the large quan-
tities of data collected by the spacecraft2,3 with the full third DR and future DRs to be produced in
the future (for the latest updates on the DRs and the mission in general see Ref. 4). Gaia has a
focal plane of 106 charge-coupled devices (CCDs), which continually make measurements of
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objects in its fields of view. Figure 1 shows a schematic of the focal plane where the CCDs are
color-coded by their instrument. Due to the continually scanning nature of the mission, the CCDs
operate in time delay and integration (TDI) mode, transferring charge at the same rate as the
objects move across the detectors.2

Gaia orbits Lagrange Point 2 (L2), the same destination of several other future space mis-
sions, such as ESA’s PLAnetary Transits and Oscillations of stars, Atmospheric Remote-sensing
Infrared Exoplanet Large-survey and Euclid missions, NASA’s Roman Space Telescope as well
as NASA and ESA’s James Webb Space Telescope. Due to the predicted radiation environment
in this region at the time of Gaia’s pre-launch phase, as well as the high-precision measurement
requirements of the mission, the increase of charge transfer inefficiency (CTI) in the CCDs from
non-ionizing radiation damage was identified in the pre-launch studies as a major factor that
would impact the useful scientific output of the mission.5 As a result, many tests and radiation
campaigns were conducted during the pre-flight stage to quantify the impact of radiation dam-
age, and several CTI mitigation strategies were devised.6,7 However, a comparatively more recent
analysis of in-flight data ∼30 months after launch has revealed that Gaia is predicted to accu-
mulate roughly an order of magnitude less damage than was initially expected during its nominal
lifetime.8,9 In fact, the overall spacecraft performance has been so good that Gaia’s mission time
has been extended past its original five-year plan. Although this is good news for the science
goals of the mission, it is important to understand, as much as possible, the reasons behind the
differences between the predicted and measured results to better understand the physics and
mechanisms for more accurate testing and predictions for other missions.

This paper analyzes an additional set of in-flight data, now taken up to six years after its
launch date, to examine the on-board radiation damage (using specially acquired calibration
datasets) and check whether there have been any major deviations from the behavior measured
in 2016. A previous analysis only looked at the CTI between two different points in the mission.

Fig. 1 The Gaia focal plane with 106 large-format CCDs. The CCDs are split into seven rows and
17 columns, each with a set of readout electronics known as proximity electronic modules. The
devices all run in synchronisation with the aid of an on-board computer. The CCDs are also split
into 17 different strips. The CCDs in this figure are color-coded according to the functional group
they belong to. The color designations are as follows: black for the wavefront sensors (WFS),
purple for the BAM, maroon for the SM, turquoise for the AF, blue for the BP, red for the RP, and
orange for the RVS. Figure reproduced from previous work.5
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This paper is an extension of the previous work and analyses the data across multiple points in
the mission and quantifies the evolution and increase of the CTI in time.5

2 Radiation Damage in CCDs

CCDs have a rich history of use in many space applications and missions in the past. CCDs
consist of a metal-oxide-semiconductor structure where charge in the form of photo-electrons
is generated in the semiconductor from incident photons. In space, CCDs aboard spacecraft are
exposed to radiation, which consists of energetic particles, such as protons, electrons, and neu-
trons from galactic cosmic rays (GCRs) and solar events. These particles can cause displacement
damage in the CCDs.

When displacement damage occurs, atoms are knocked out of the silicon lattice by the high
energy particles. The exact spectrum and energy of particles varies with respect to orbit, location
in space, and the behavior of the Sun. The vacancy, or absence of the silicon atom, diffuses
through the silicon and can form a stable defect with either another vacancy or an impurity
atoms, such as oxygen or phosphorus. These defects, or traps, have their own characteristic
energy levels and the traps capture and emit photo-electrons from passing charge packets on
probabilistic timescales. Depending on the charge transfer period, trails of charge can be formed
behind the signal packets, which reduces the quality of the data and distorts the signal.10

3 Gaia CCD Details

Gaia’s CCDs, which have been custom-designed and manufactured by Teledyne e2v, have a
number of special features to reduce the impact of radiation damage and charge trapping.
The CCDs were designed with a supplementary buried channel (SBC), which is a notch in the
buried channel region that can confine small charge packets to a smaller volume so that they
encounter fewer traps. In addition to this, the CCDs have a charge injection (CI) gate structure
where rows of charge can be periodically injected and transferred through the CCDs to keep traps
filled so signals can pass by undistorted.11 While all of Gaia’s CCDs were manufactured with
these features and with identical chip architectures, they were also manufactured in three differ-
ent variants, each optimized to improve their quantum efficiency in different wavelength regimes
to fulfill different objectives.

3.1 Device Variants and Year of Manufacture

About 78 of the focal plane CCDs were of the astrometric field (AF) variant device, which were
built on 25-μm standard silicon, thinned to 16 μm with a resistivity of 100 Ω cm, and have an
anti-reflection (AR) coating centered at 650 nm. These devices were implemented on the AF and
Sky Mapper (SM) instruments as well as the wave-front sensors (WFS). The seven CCDs of the
Blue Photometer (BP) instrument used the BP variant CCDs, which were made with 16 μm,
100 Ω cm resistivity standard silicon but had an AR-coating that was centered on 360 nm, mak-
ing them more sensitive to bluer wavelengths. The third CCD variant was the red photometer
(RP) variant that was used on instruments that required greater sensitivity to redder wavelengths.
They were manufactured with a thickness of 40 μm using deep-depleted silicon that had a resis-
tivity of 1500 Ω cm and had an AR-coating centered at 750 nm. These variants were used in the
seven CCDs of the RP Instrument, the 12 CCDs of the radial velocity spectrometer (RVS), and
the two basic-angle monitor (BAM) CCDs.5,8,12

Many different devices were manufactured in the time before launch, to be used in perform-
ing radiation testing and sector analysis or to be implemented as in-flight devices. Due to the
comparatively larger number of devices required on the focal plane as compared to other space
missions, the in-flight devices were all manufactured at different times and came from different
batches of silicon. In a previous study, it was found that the CCDs that were manufactured after
2004 were more likely to contain a reduced SBC full well capacity as compared to earlier
devices.13 To check for any correlations between device performance in the results of this paper
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and the time of production, Fig. 2 was produced, which illustrates the corresponding year of
manufacture of the in-flight devices.5

3.2 Pre-Flight Tests

As has been mentioned previously, a number of pre-flight tests were conducted on the Gaia
CCDs to work out how to optimize the CCD performance as well as to investigate the effects
of radiation damage. Surrey Satellite Technology (formerly Sira) and Airbus Defence and Space
(formerly EADS Astrium) were the main industrial partners of the mission who performed these
tests, the latter of whom performed five radiation campaigns to test device performance. While
hardware optimization structures were implemented into the design, as outlined previously, oper-
ating techniques were also investigated, which would optimize the performance as much as pos-
sible. Some of the main conclusions derived from these campaigns were selecting a 163 K
operating temperature to optimize CTI between the parallel and serial directions, the use of peri-
odic CIs to reset the illumination history in the CCDs, and the rejection of artificial light to
produce flat-fields for calibrations.6,12

A number of computer models and simulations were also used in conjunction with these exper-
imental tests. To measure the CCD irradiation levels to be used in the radiation campaigns, Airbus
Defence and Space simulated a prediction for the 10-MeVequivalent NIEL dose of protons across
the focal plane; Fig. 3 reproduces this predicted NIEL dose.14 This prediction was made in 2006,
using the predicted level of solar activity at the time. This NIEL dose prediction only considered
particles from solar events, neglecting the effects of GCRs, as well as only considered the primary
emission of particles. In Fig. 3, it can be seen that the AF devices receive the largest fluence of 10-
MeVequivalent protons in this prediction, with the devices in the center receiving the largest dose
due to these devices being exposed the most to radiation. The BP, RP, and RVS instruments have
optics and photometers setup in front of the devices which causes a reduced impact from the 10-
MeV equivalent dose, as is noted in Fig. 3. This predicted pattern formed the basis for the irra-
diations used in all the pre-flight tests; because the AF CCDs were predicted to receive a dose of
3.1 × 109 pþ∕cm2 10-MeV equivalent protons, irradiations were performed at a slightly higher
level of 4 × 109 pþ∕cm2 10-MeV equivalence to overestimate the damage.14,15

A semi-empirical model was also developed during the pre-flight testing called the charge
distortion model (CDM);16 it was developed for forward modelling to reproduce the image dis-
tortion from the effects of radiation damage. CDM uses an electron confinement volume model

Fig. 2 The year of manufacture of all the in-flight devices on the Gaia focal plane; reproduced from
previous work.5
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where the signal level and the volume confined by the charge cloud are related by a power-law,
defined by a β parameter.16 Previous work has been successfully conducted to model observa-
tions with CTI to obtain the true image parameters from the damaged observations.6,7

4 Charge Data Monitoring

Calibration activities are run periodically on-board Gaia, initially with a cadence of every 3 to 4
months, to monitor the performance of the devices. Unique strategies are adopted to make mea-
surements of different detector characteristics. Previous analyses of these measurements have
revealed that the detectors are functioning as expected with no major issues.8,17

The CTI is measured regularly by examining the charge loss from CI lines. Previous analysis
of both the in-flight parallel and serial [along-scan (AL) and across-scan (AC) respectively, using
the Gaia terminology] CTI data in 2016 revealed that the radiation damage experienced by the in-
flight CCDs has been well below the predicted end-of-mission (EOM) 10-MeV equivalent flu-
ence values and the degradation in performance has been less than expected.8,9 While this is
beneficial for the science objectives of the mission, it is important to understand, as well as
possible, why this discrepancy has occurred between the pre-flight tests and predictions and
the in-flight data. This is to verify the reliability in the pre-flight testing as well as to obtain
a better overall understanding of what is going on which can positively feedback into other
missions and studies. The previous analysis of charge calibration data concluded that the lower
than expected CTI levels are most likely the result of a lower solar activity level during solar
cycle 24 as well as due to mitigation of charge loss from background straylight.9 There is poten-
tial work to be done to accurately quantify all the factors causing the differences between the in-
flight and on-ground results and the results of this paper provide a starting point from which to go
forward.

This paper analyzes more in-flight data, using data taken all the way up to the end of 2019,
beyond the original EOM date, to see how the CTI level and radiation damage compares to the
previous results. In previous studies, AL and AC CTI were measured from alternate CI schemes.
Regular CIs are conducted periodically at fixed levels in the AF, BP, and RP devices; these are
carried out every ∼2 s (corresponding to a 2000 TDI period) for the AF devices and every 5 s

Fig. 3 A graphical representation of the 10-MeV equivalent proton NIEL dose, measured in
protons∕cm2, predicted by Airbus Defence and Space a number of years before launch in
2006. The EOM NIEL prediction for the CCDs ended up being lower than this at the time of launch
but irradiation levels for the on-ground tests were based on this set of predictions.
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(5000 TDI) for the BP and RP devices. While the RVS devices were built with a CI structure, one
that is used in some of the calibration activities, regular CIs are not implemented on these devices
as the signal would interfere too much with the finer measurements and long spectral windows
and the leading edge of the long spectrum would act to fill the traps.8

Compared to the CI period of 2000 TDIs in the AF CCDs and 5000 TDIs in the photometers,
the CIs investigated in this study had a smaller period of 455 TDIs. This means that more traps
would have been filled between the charge-injection generated virtual objects (VOs) and so the
measured parallel CTI values will be lower as compared to the values measured with the regular
CIs. The trends of the CTI behavior with time should still be clearly visible. In addition, the use
of these datasets to measure parallel CTI means that parallel CTI can also be investigated in the
RVS devices. As previous studies only looked at parallel CTI measurements from CIs, new
insights are obtained about the behavior of the RVS devices. The CTI measurements can also
be more easily compared between different devices because the CIs of the calibration activity all
have similar charge levels and periods across all the devices as opposed to the regular CIs, which
are not only non-uniform between CCDs, but, as mentioned previously, had different periods
depending on the instrument.8,15

The technique that is used to analyze the CTI in the serial direction involves generating
charge in the image pixels and monitoring any trailing in the post-scan pixels after transferring
through the serial register. Five different levels of CI are generated in this activity with VOs
placed over the end of the image area. This calibration activity was initially proposed to be run
monthly or bi-monthly but due to the lower than expected amount of damage, it is now run every
three to four months; it is likely to be less frequent in the future.8,15 Figure 4 details a set of serial
CTI results with respective signal levels for a single CCD at all the different times the calibration
activity was run. It can be seen that there is a small but finite increase of CTI with time. As the
charge is generated at one end of the CCD and is transferred across the device to the serial
register at the other end, it is possible to investigate the parallel CTI using this set of data
as well. In this study, both the serial and parallel CTI were measured using just the calibration
data; data were only available for science CCDs, except for the SM CCDs.

An important complexity should be noted about the CTI results. The parallel transfer speed is
at the TDI scanning speed of 982.8 μs so the parallel CTI should be reflective of any trap species

Fig. 4 The five CI values with corresponding CTI values for each calibration run for a device near
the center of the focal plane. A slow but finite degradation in CTI is visible with respect to time. For
the sake of completeness, data from January 2014 is produced here; the data from this time are
not used in the rest of this study as the focal plane was known to be at a higher temperature.
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emitting around those timescales. In comparison, transfer in the serial direction takes place at two
different speeds; there is a 10-MHz flush to transfer data to the readout node and a slower kHz
speed for readout.8 This means the charge tail will be formed from trap emission at two different
timescales. For these results, only emission at MHz timescales is considered as it dominates the
serial CTI but it is noted that it would be useful to conduct a study in the future to look at the
differences between different readout speeds.

To obtain the next set of measurements and compare the CTI of all the devices against each
other, a number of processing steps were conducted. A power-law relationship was fit between
the parallel and serial CTI values and their corresponding CI levels.5 The reason a power law was
chosen was due to a similar model used in Gaia’s CDM 16 and the verification of such a relation-
ship from other experimental studies.18 Once this relationship was extrapolated, a CTI value was
calculated for the same signal level (10,000 electrons was used for all the results) for all the
devices. By using the same virtual signal, the CTI between all the devices can be more easily
compared against each other.5

5 Serial CTI (AC Direction)

5.1 2014 and 2019 Data

Using the data analysis steps outlined in the previous section, the diagrams in Fig. 5 were gen-
erated, which highlights the serial CTI of all the CCDs at two different times, initially computed
and analyzed in a previous work.5 Figure 5(a) shows the CTI in April 2014, just a few months
after launch, while Fig. 5(b) shows the CTI in December 2019, more than five years later. The
mean CTI for each instrument was also calculated at the two times and these values are given in
Table 1. The calibration data from January 2014 was not used as the cool-down of the payload
was still not complete. Figure 5(a) is similar to the plot generated in the previous set of results in
2016, verifying the reliability of these results. It is assumed that the oxygen defect, called the A-
center, is likely to be responsible for the bulk of the serial CTI as it has a comparable release time
with the 10-MHz flush that dominates the serial transfer. A previous pre-flight test revealed a trap
species that emitted faster than the A-center so there is a chance for the AC CTI to be caused
from this trap species as well.8,19

The 2014 results in Fig. 5(a) and Table 1 should be reflective of the initial CTI state of the
CCDs as the accumulated radiation damage within the first few months is known to be minimal.
The results show that the thicker RP devices, found in both the RVS and the RP, all measure a
lower serial CTI as compared to the other devices. Even though thicker devices are known to
have different properties to thinner devices, such as being more sensitive to cosmic rays and
having larger amounts of dark current, it is currently unknown why these devices would be
manufactured measuring a lower serial CTI compared to thinner devices with the same
architecture.20 If the serial CTI is indeed primarily caused by A-centers, then this could be due
to a smaller amount of oxygen and A-center defects being present in the buried channel region.
This could have been the result of impurity oxygen having a larger amount of silicon to diffuse
through during manufacture. It would be useful to perform trap-pumping on unirradiated thick
and thin devices to understand the trap landscape and narrow down the reasons behind this
behavior. Trap-pumping is an analysis technique that makes it possible to observe individual
trap species and their properties with a high level of accuracy and quantify their densities. It
involves the clocking of a flat-field signal between phases which leads to the formation of dipole
maps that can be studied in more detail.21–23

It can be seen that the pattern of serial CTI distribution across the focal plane is the same in
2014 and 2019. This indicates that the serial CTI is still dominated by the initial CTI state and the
amount of radiation damage has not been significant enough to alter this distribution pattern. The
2019 CTI values in Table 1 are within the same order of magnitude as the 2014 CTI values; this
demonstrates a very low rate of increase. The AF and BP CCDs measure a smaller percentage
increase in their serial CTI (∼6% to 9%) as compared to the red variant devices (∼27%).5 With
Gaia having been in orbit for just over its original mission lifetime, no major deviations are seen
from the previous set of CTI results, as measured in 2016.
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Table 1 Mean serial CTI (at 10,000 electrons) for each instrument as measured in
April 2014 and December 2019.

CCD instruments 2014 mean CTI (×10−5) 2019 mean CTI (×10−5)

AF 3.5� 0.3 3.8� 0.3

BP 3.6� 0.2 3.8� 0.2

RP 1.5� 0.1 1.9� 0.1

RVS 1.5� 0.1 1.9� 0.1

Fig. 5 The distribution of the derived serial CTI values across the focal plane for a signal of 10,000
electrons as measured in (a) April 2014 and (b) December 2019; reproduced from previous work.5
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5.2 Rate of Increase

Using the serial CTI values for each CCD at the time of each calibration activity, a linear relation-
ship was fitted between serial CTI and time. The slopes derived from these relationships were
taken as the rate of increase of CTI with time and were computed for each CCD; these values are
shown for each CCD in Fig. 6. If outliers are ignored, the column-wise CTI distribution would
seem loosely similar to the NIEL-dose prediction from Fig. 3, however, the pattern is not very
clearly defined so a correlation cannot be established.

Combining the data from the CCDs for each instrument, the values in Table 2 are produced
which gives the mean rate of increase for each instrument, in units of both Gaia revolutions and
in years. Figure 7 shows the mean CTI for each instrument and how it increases with time; the
values were calculated for each calibration activity run. Three major sets of solar flares are also
marked out; the events in 2014 and 2015 had obvious effects in the previous set of data analysis
of in-flight parallel CTI.9 Interestingly, these events do not seem to have a significant impact on
the serial CTI. In contrast, the solar flare events in 2017, which were more larger and powerful,
make a slightly more noticeable impact on this set of charge calibration data. This could be due to
the relatively high level of CTI from the beginning of the mission which means the relative
contribution from a solar event is much less evident on serial CTI. There is a loosely, linear
increase of CTI in time, justifying the use of a linear extrapolation for the results of Fig. 6 and
Table 2. The fluctuations and uncertainties seen in the data are likely due to photon noise from
straylight and noise from bias and background subtraction during data processing.

Fig. 6 The extrapolated rate of increase of serial CTI (at 10,000 electrons) for each CCD during
the six-year period of the charge calibration.

Table 2 Mean increase in serial CTI per time for each instrument on the focal
plane for a signal of 10,000 electrons.

CCD instruments CTI increase/revs (×10−10) CTI increase/year (×10−7)

AF 5.5� 0.9 8.0� 1.0

BP 4.0� 1.0 6.0� 1.0

RP 6.0� 0.3 8.8� 0.4

RVS 5.7� 0.8 8.0� 1.0
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From the results of Figs. 6, 7, and Table 2, it can be seen that the RP devices in the RP and
RVS measure comparatively higher rates of increases as compared to the other devices. It is
known from Fig. 3 that the Blue and RPs receive an equivalent amount of fluence, likely due
to similar levels of shielding. More tests will need to be conducted to more precisely determine
the physical reasons behind the calculated higher increase. Current hypotheses include the initial
CTI state or the geometry of the devices affecting the rate of radiation damage as well as inter-
actions between the shielding and the radiation altering the energy spectrum of incoming
particles.

5.3 NIEL-Scaled Rate of Increase

It is useful to track the evolution of CTI of each individual device to work out the correct data
processing procedure for each CCD. However, by scaling the rate of increase results by the NIEL
values from Fig. 3, it becomes possible to remove the variation in dose and shielding effects and
examine the CTI increase between each CCD variant against each other more reliably. For exam-
ple, in Fig. 6 and Table 2, it can be seen that there is a large variation in the CTI increase of the
various AF devices due to the NIEL dose. Figure 8 reproduces Fig. 6 but with the rate of increase
values of each CCD scaled by their corresponding NIEL dose value from Fig. 3. Table 3 also
shows the new rate of CTI increase values for each different instrument after the CCD values are
scaled.

In Fig. 8, the AF devices now all highlight rates of CTI increase that are more comparable to
each other as the shielding pattern from Fig. 3 is removed. This would indicate that all the AF
CCDs experience radiation induced CTI increase on equivalent levels to each other. An inter-
esting observation from Fig. 8 and Table 3 is that even after accounting for the NIEL dose, the RP
devices still measure larger rates of CTI increase which are not measured by any of the other
device variants. This gives more credence to the idea that it is a unique property of the thick RP
devices that is causing this larger increase in CTI. It remains to be seen whether this feature is due
to the lower initial CTI, an additional unknown effect of shielding not accounted for in the NIEL
dose calculation, the manufacture of the devices, or due to device geometry.

It is noted from Fig. 8 that some of the BP devices seem to have rates of CTI increase that are
more comparable to the RP devices than with the AF and BP devices. This would suggest that
despite the reduced impact from the 10-MeVequivalent NIEL-dose, the shielding from the optics
and photometers could somehow be affecting the radiation damage in a counterintuitively more

Fig. 7 Evolution of the mean serial CTI for each instrument, calculated from the CTI measured
from all the devices at each different time. There is a steady, linear increase in time with fluctua-
tions likely due to noise. Three main sets of solar flare events are all marked out. The x axis spans
a little under six years.
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destructive manner. This could be due to radiation interfering with the optics and photometers in
some way, either causing secondary emissions or slowing down higher energy particles that may
not have caused damage otherwise. In previous on-ground studies, it has been reported that
aluminium shields in front of CCDs have caused higher energy particles to lose some of their
kinetic energy so a similar phenomenon could be occurring here.19 Given only some BP devices
measure this relatively higher increase though, this effect appears to be minimal, at least for the
serial CTI.

From Tables 2 and 3, it can be seen that the rate of increase of CTI per year is around the order
of magnitude of 10−7. This is at least two orders of magnitude smaller than the CTI values at the
beginning of the mission, as noted in Table 1. This illustrates that the degradation of the CTI
from the current status is very low.

6 Parallel Charge Transfer Inefficiency (Along-Scan Direction)

6.1 2014 and 2019 Data

In a similar procedure to the serial CTI, the parallel CTI distribution of the CCDs across the focal
plane in April 2014 was also reproduced, as given in Fig. 9(a) with Fig. 9(b) reproducing the year
of manufacture plot from Fig. 2 for comparison. The results in Fig. 9(a) are similar to previous

Table 3 NIEL-scaled mean increase of serial CTI per time for each instrument on the focal plane
for a signal of 10,000 electrons.

CCD instruments CTI increase (NIEL scaled)/revs (×10−10) CTI increase (NIEL scaled)/Year (×10−7)

AF 1.8� 0.3 2.6� 0.4

BP 2.6� 0.5 3.8� 0.8

RP 3.8� 0.3 5.6� 0.4

RVS 3.1� 0.5 4.5� 0.7

Fig. 8 The extrapolated rate of increase of serial CTI (at 10,000 electrons) for each CCD during
the six-year period of the charge calibration data with each CCD scaled by its corresponding NIEL
dose value from Fig. 3.
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CTI results that were taken for the CCDs before launch, both validating the data analysis pro-
cedure and confirming that the parallel CTI after launch is almost identical to the CTI before
launch and extremely low.15

Comparing the parallel CTI results to the year of manufacture in both plots of Fig. 9 reveals
that all the devices manufactured in 2009 measure a higher initial CTI as compared to the devices
manufactured in earlier years. However, it is currently unknown why this may be. It could be due
to a change in the manufacturing process or due to the use of a different silicon feedstock. This
does not appear to be dependent on device variant as the RP devices manufactured in earlier
years have comparable CTI values with the other device variants.

Figure 10 shows the distribution of the parallel CTI across the focal plane from the data taken
in December 2019. This is several months past the original mission end date which means the
results can be compared with the pre-flight tests to quantify the disparity between the two. As

Fig. 9 (a) The distribution of the parallel CTI values across the focal plane as measured in April
2014 for a signal of 10,000 electrons reproduced from previous work.5 (b) A reproduction of Fig. 2
to compare against the parallel CTI results; the 2009 manufactured devices are measured to have
a higher initial CTI.
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was the case for the serial CTI, the distribution pattern in 2019 is more reflective of the initial CTI
state from 2014 than the predicted NIEL dose pattern. This suggests that the radiation damage
has not been significant enough to drastically alter the CTI distribution across the focal plane. It
also indicates that the long-term radiation damage contribution from the solar protons has been
minimal as the NIEL pattern is not evident in Fig. 10. This lack of a clear NIEL pattern could also
be due to the scale of the CTI values, which is limited by the red devices; previous studies have
illustrated the pattern when studying just the AF devices.8

Table 4 gives the mean parallel CTI measurements for each instrument as measured in April
2014 and December 2019. To more reliably compare the devices against each other, the RP devices
are split by their year of manufacture instead of by instrument. Comparing the 2014 CTI values in
Table 4 to those in Table 1, it can be seen that the parallel CTI is up to two orders of magnitude
lower than the initial serial CTI. In addition to this, the initial CTI measured by the 2009 devices is
calculated to be higher by an order of magnitude as compared to the other devices.

The 2019 CTI values in Table 4 for each instrument and CCD variant are within the same
order of magnitude with respect to each other. This again verifies that there is no apparent
dependence between the initial parallel CTI and the rate of increase of CTI. However, the initial
CTI is still affecting the 2019 CTI, as the 2009 devices measure the largest CTI values after six
years. This highlights the lower level of radiation damage and demonstrates the need to keep
track of the CTI at different stages of space missions and including on-ground testing and analy-
sis to make sure every factor is accounted for.

Fig. 10 The distribution of parallel CTI values across the focal plane as measured in December
2019 for a signal of 10,000 electrons; reproduced from previous work.5

Table 4 Mean parallel CTI (at 10,000 electrons) for each instrument as measured
in April 2014 and December 2019.

CCD instruments 2014 mean CTI (×10−6) 2019 mean CTI (×10−6)

AF 0.17� 0.09 1.6� 0.2

BP 0.18� 0.09 1.3� 0.3

RP (Pre-2009) 0.4� 0.2 1.8� 0.2

RP (2009) 1.7� 0.5 3.6� 0.6
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6.2 Rate of Increase

As was conducted for the serial CTI, a linear relationship was extrapolated between the CTI for
each CCD and time. Figure 11 shows the distribution of these rate of increase values across the
focal plane. The NIEL-dose pattern across the AF devices from Fig. 3 is not present in Fig. 11; in
previous results, the NIEL pattern has been visible across the focal plane for parallel CTI but only
after the devices are investigated straight after the occurrence of a solar event.8 Parallel CTI
degradation is most likely predominantly caused by other sources, such as higher energy
GCRs; previous analysis of in-flight data have calculated that GCRs are responsible for around
75% of the parallel CTI degradation.9 The RP devices seem to measure slightly higher rates of
increase compared to the other devices, possibly due to the reasons detailed previously.

Table 5 outlines the mean increase of CTI per instrument, also split by the year of manu-
facture for the RP devices to analyse effects of initial CTI. From Table 5, it can be seen that the
CCDs with the higher initial CTI measure relatively the same rate of increase as the other devi-
ces. This demonstrates that the initial CTI does not affect the increase of CTI from radiation-
induced traps; an expected result as the defects responsible for parallel CTI from manufacturing
and radiation damage are known to be unique. The rate of parallel CTI increase for all the devices

Fig. 11 The extrapolated rate of parallel CTI increase for each CCD as derived from the 6 years of
charge calibration data, for a signal of 10,000 electrons.

Table 5 Mean rate of increase of parallel CTI increase for each instrument for a signal of 10,000
electrons. The RP variants are additionally split by their year of manufacture.

CCD instruments CTI increase/revs (×10−10) CTI increase/year (×10−7)

AF 1.6� 0.2 2.3� 0.3

BP 1.4� 0.3 2.0� 0.5

RP 1.7� 0.4 2.4� 0.5

RVS 1.8� 0.1 2.6� 0.2

RP (pre-2009) 1.7� 0.2 2.5� 0.4

RP (2009) 1.8� 0.3 2.6� 0.4
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is the same order of magnitude as it was for the serial CTI increase. This likely indicates that
serial and parallel CTI are caused by different trap species that form independently of each other.

Figure 12 shows the mean CTI increase for the AF and BP instruments as well as the RP
devices, split by their year of manufacture. Compared to results from previous studies,8,9 the
impact of the solar flare events on the parallel CTI is less substantial. This could be due to the
lower injection period and different signal values used in this data as well as a comparatively
higher level of noise present in this dataset. The 2017 solar flare events cause a much more
obvious impact on the CTI, with big step increases in the CTI for each instrument. The
2009 RP devices measure larger uncertainties in the CTI, likely due to the larger variance in
the pre-flight trap defect concentrations and corresponding initial CTI values across fewer devi-
ces (as shown in Fig. 9), which seem to be more dominant over the radiation induced CTI.
Similar to the serial CTI, a loosely linear increase of CTI in time is observed.

6.3 NIEL-Scaled Rate of Increase

To compare the CCD variants more reliably, the rate of increase of CTI for each CCD was scaled
by the corresponding NIEL dose values from Fig. 3. This produces the distribution pattern as
shown in Fig. 13; the values for each CCD were used to calculate the mean CTI increase values
for each instrument as given in Table 6. Given that there was found to be no apparent dependence
on the initial CTI in Table 5, the RP devices are not split by manufacture year in Table 6. From
both Fig. 13 and Table 6, it can be seen that the BP and RP devices both measure higher CTI
increases as compared to the AF devices, roughly by a factor of 2. Interestingly, both these sets of
devices were predicted to have a lower 10-MeV equivalent dose, as was seen in Fig. 3.

The BP devices are identical to the AF devices aside from a hafnium oxide coating to increase
the quantum efficiency of the BP devices to bluer wavelengths and photometers setup in front of
the devices. While no studies have looked into the effects of AR coatings on CTI, these are not
believed to have a significant contribution. One current hypothesis is that the optics and pho-
tometers, alongside the higher energy GCR particles could be causing this increased damage in
the BP devices, while also explaining the behavior of the RP devices. Hypothetically, particle
energies could change when passing through the optical setups so there is more displacement
damage per particle.

Fig. 12 Evolution of the mean parallel CTI (at 10,000 electrons) for each instrument, calculated
from the CTI measured from all the devices at each different time. Instead of instrument, the thicker
red devices are split by their year of manufacture. There is a steady, linear increase in time with
fluctuations likely due to noise. Three main sets of solar flare events are all marked out. The x axis
spans a little under six years. The data from 04 November 2014 were omitted as it was defective
for a number of devices.
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6.4 Comparison with On-Ground Data

In the previous analysis of in-flight data, comparisons were made with on-ground data taken
from an irradiated flight-model CCD using the Gaia test bench at the ESA/ESTEC site in
The Netherlands.9 By reproducing and extrapolating the results from the previous analysis (with
permissions from the original author) and comparing them with the results of the in-flight cal-
ibration data from December 2019, it becomes possible to make another comparison between the
on-ground and in-flight results. This is visualized in Fig. 14, with fractional charge loss mea-
surements calculated as the total charge in the trailing pixels divided by the signal level (taken as
the value of the final CI pixel).

For a signal of up to 10,000 electrons, the difference in fractional charge loss between the on-
ground and in-flight results were found to be a factor of ∼20 for the CCDs manufactured before
2009 and a factor of 11 for the CCDs manufactured in 2009. For larger signals around 40,000
electrons, the difference in fractional charge loss was found to be around 13 for the pre-2009
manufactured devices and a factor of around 9 for the 2009 devices. While it would appear as if
the CCDs are functioning better than the factor of 7–8 difference measured in 2016,9 a number of
elements are making this difference higher than it actually is. These reasons include the lower CI
period as mentioned in Sec. 4 (as compared to the previous in-flight and on-ground periods) as
well as the higher irradiation on the on-ground devices. After accounting for all the determinants,

Table 6 Mean rate of increase of parallel CTI increase (at 10,000 electrons) for each instrument,
scaled by the NIEL-dose values from Fig. 3.

CCD instruments CTI increase (NIEL scaled)/Revs (×10−10) CTI increase (NIEL scaled)/Year (×10−7)

AF 0.51� 0.07 0.7� 0.1

BP 0.9� 0.2 1.3� 0.2

RP 1.0� 0.1 1.5� 0.2

RVS 1.0� 0.2 1.5� 0.2

Fig. 13 The extrapolated rate of parallel CTI increase for each CCD as derived from the 6 years of
charge calibration data, for a signal of 10,000 electrons, scaled by each CCD’s corresponding
NIEL-dose value from Fig. 3.
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it is likely that the accumulated radiation damage has not deviated significantly from the pre-
dicted trend, extrapolated using the previous data in 2016.

7 Solar Activity

During the early pre-flight testing stage of Gaia, solar cycle predictions were made using the
industrial standard, with 90% confidence levels, based on the current predictions of the behavior
of Solar Cycle 24.14 However, as time went on, more predictions were made about a weaker solar
cycle for the Sun instead. Figure 15 details the highest and lowest predicted activity levels for
Solar Cycle 24, as predicted in 2009 as well as the actual activity, produced using data from the
NOAA Space Environment Services Center.24,25 From the sunspot number, it can be seen that the

Fig. 15 The monthly mean sunspot number counts for the activity of the Sun from 2000 to 2020
compared with the high and low predictions of Solar Cycle 24 as well as the mean prediction for
Solar Cycle 25 (proton flux source data: NOAA Space Environment Services Center).

Fig. 14 A comparison of the fractional charge loss derived from the in-flight data taken at the end
of 2019 with the charge loss values from an on-ground irradiated CCD, reproduced (with permis-
sions) from the work done by Crowley et al.9 The lower signal-to-noise ratios in the lower CIs
increases the variance in the values; error-bars have been omitted for visual clarity.
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solar activity has been closer to the lower prediction level than to the highest. In addition to this,
Gaia was planned to have been launched earlier, with the original mission timeline highlighted in
Fig. 15, as prepared in 2010. Gaia was launched slightly later than its original proposed launch
date and has a preliminary mission extension granted to 2022. Given the amount of fuel on
board, Gaia could continue operating into 2024, over ten years since its launch date and double
the original mission time, all due to the current exemplary levels of performance.26

Figure 15 shows an idea of how much the pre-flight predictions influenced the testing. Due to
the earlier launch date and the 90% confidence levels for testing, pre-flight testing occurred with
high irradiations of protons on comparative energy levels to solar protons. It is known that there
is an anti-correlation between GCRs and solar protons where a lower flux of solar protons leads
to a higher flux of GCRs.9 Due to the lower solar activity and nominal operations during the back
half of Solar Cycle 24, the bulk of the radiation damage on Gaia has likely been a result of higher
energy cosmic rays, as has been extrapolated from the analysis of these datasets.

It would be useful to keep track of more current predictions for solar cycles to have a more
refined idea of the predicted radiation effects. Solar Cycle 25, to date, has been predicted to have
approximately the same amount of activity as Solar Cycle 24, as shown in Fig. 15.25 As the Gaia
mission has been extended, the spacecraft will now start to receive the effects of increased solar
radiation from the beginning of Solar Cycle 25. In the AF devices, the effects of time-evolving
CTI biases on astrometry are clearly visible and these effects on the AF CCDs in Data Release 3
(DR3) will be detailed in the documentation accompanying the release.

The CTI of the RP devices evolves relatively less in time compared to the AF and BP devices
due to the higher initial CTI state. From DR 2, a slight CTI bias has been detected in the mea-
surements of the RVS devices of the fainter magnitude stars when comparing results between
Gaia data and data from ground-based catalogs.27 This CTI bias will affect DR3 radial velocities
and is constant in time and will require empirical corrections; the CTI biases will be removed via
posteriori calibrations. If the CTI bias is found to vary with time, more forward modeling tech-
niques, such as CDM, or potentially an adaptation of a new model such as the CCD Charge
Transfer Model (C3TM),28 will be required. Due to this, it is critical to keep track of the ongoing
radiation damage in Gaia as the new solar cycle and successively increasing damage will lead to
new sets of results.

8 Discussion and Future Work

Many interesting results and insights have been revealed from these results with respect to the
correlations between CCDs and radiation damage. It is noted that the baseline for the periodic
charge calibrations, as of the beginning of 2021, has been reduced to a cadence of approximately
6 months as opposed to the 3 to 4 months from the beginning of the mission. Increases in CTI
from the nominal data are routinely monitored, and if a large damaging event is detected, addi-
tional sets of these calibrations will be run as needed.

It has also been noted that the pattern of the rate of increase of parallel and serial CTI has little
similarity to the predicted 10 MeV equivalent NIEL dose pattern, which used a solar proton
spectrum as an input. From other studies, it has been calculated that higher energy GCRs have
been responsible for the bulk of the radiation damage.8 The energy of the incoming particles
could have an effect on the production of various trap defects. Alternatively, the cryogenic space
environment could be causing different effects in the formation of trap species as compared with
room temperature irradiations from the on-ground tests; this effect could be more pronounced in
the parallel direction than the serial.9 To test these hypotheses, irradiations of different energies,
and at different temperatures, should be performed on the same type of CCD, after which trap-
pumping should be conducted to understand the trap-landscape and how it is affected by the
different factors.

The rate of CTI increase is measured to be the same order of magnitude in the parallel and
serial directions, of the order of around 10−7 a year. This would suggest that the trap species
responsible for parallel and serial CTI are unique and not competing against each other. It is
currently unknown why different devices at the beginning of the mission were measured to have
different amounts of CTI, be it the lower serial CTI for all the RP devices or the higher initial
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parallel CTI for the RP devices manufactured in 2009. It is recommended to perform trap pump-
ing between different sets of unirradiated devices, either thick and thin devices or the same devi-
ces manufactured at different times, to understand the trap-landscape differences between the
device variants. This would provide a starting point into the nature of the trap defect map of
CCDs of different architectures. It would also be useful to perform trap pumping on these same
devices after irradiation as well, as the RP devices have been measured to have larger rates of
increase than the other devices. This should provide more quantitative details on how different
device variants are altered by radiation.

It has also been measured that the BP and RP devices measure relatively larger rates of
increase (more evident in the parallel direction), than the AF devices. This is in contrast to the
predicted 10-MeV equivalent dose across the devices. The current hypothesis for this is that the
photometers and optics setup in front of the BP and RP devices could be interfering with the
incoming radiation. One hypothesis is that higher-energy particles are losing energy to the optics
and hitting the detectors at a lower energy and hence causing more damage. This would line up
with the conclusion that higher energy GCRs have been causing more damage, but specifically
designed simulations (such as with Geant4) or laboratory tests would need to be conducted to
verify this.

9 Conclusions

This paper has presented an overview of the CTI measurements of the science data measuring
CCDs on-board Gaia over a six-year period. It has been shown that the overall rate of radiation
damage accumulation has been relatively low since launch and the detectors are accumulating
less damage than was predicted. The trap defect landscape is still dominated by defects present
before launch after six years in orbit. Devices predicted to have a lower NIEL dose were mea-
sured to have comparatively larger rates of CTI increase. The RP devices that were manufactured
in 2009 have also been measured to have comparatively higher levels of parallel CTI compared
to earlier manufactured devices. All the thicker RP devices measured lower serial CTI values
compared to the thinner device variants. While no definitive conclusions can be made, it has been
suggested most of the damage has been due to higher energy particles which have a larger than
expected flux due to the low solar activity. It has also been revealed that devices across the focal
plane have different levels of CTI degradation but the exact physical reasoning behind this is
currently unknown. Ultimately, more tests need to be conducted to get a better understanding of
the CCD behavior; however, it can be said for certain that all the devices are operating well, and
CTI levels of the Gaia CCDs are still well below pre-flight expectations as it undergoes mission
extensions.
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