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ABSTRACT 

With the rapid development of semiconductors, today's optical lithography is approaching its physical limits, and thus 
alternative patterning technology is urgently desired. Extreme ultra-violet (EUV) lithography, using a wavelength of 
13.5 nm, is considered one of the most prominent candidates for next generation lithography. The main challenge for 
EUV resists is to simultaneously satisfy resolution, LWR (line-width roughness) and sensitivity requirements following 
the ITRS roadmap1. Though polymer-based CAR (chemically amplified resist) is the current standard photoresist, 
entirely new resist platforms are required due to the performance targets of smaller process nodes. In this paper, our 
recent progress in metal oxide nanoparticle photoresist research will be discussed. Brief discussion of a number of 
important structure and property issues pertaining to key characteristics affecting resist performance is also included. 
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1. INTRODUCTION 
Currently, industry has been relying on 193nm immersion lithography with multi patterning to print fine features on 
resist materials. Extreme ultraviolet (EUV) lithography is anticipated to succeed 193nm immersion lithography to meet 
the demands of the sub-10nm node1. EUV lithography is already capable of achieving sub-13nm half pitch resolution in 
a single exposure2. However, owing to challenges which must be addressed such as low EUV source power and the RLS 
(Resolution – LWR – Sensitivity) tradeoff, EUV lithography has not yet been applied to semiconductor manufacturing. 
Nevertheless, the effort to realize this method has been continuing on both hardware and material side. 

The trend of ever decreasing feature sizes in subsequent lithography generations is paralleled by the need to reduce resist 
thickness to prevent pattern collapse. Thinner films limit the ability to transfer the pattern to the substrate during etch 
steps, for the sub-30 nm node, the critical aspect ratio will be less than 2:1, meaning 40~60 nm thick resists will be 
commonplace. Secondly, as the feature size has continued decreasing, the size of polymer chains in conventional 
photoresists, with a root-mean-square end-to-end distance of 6-10 nm3, suggests that defects in the pattern edge areas 
will be greater than 3-5 nm, which cannot be neglected compared with the decreasing target feature size (sub-30 nm). To 
address this problem, we have developed an inorganic-organic hybrid nanoparticle system with significantly higher etch 
resistance and small particle size. These nanoparticle photoresists show promising lithographic performance using DUV, 
e-beam and in particular EUV exposure, meanwhile, their superior etch resistance and extremely small constituent size, 
are clear advantages for ultimate resolution patterning. 

 

2. RESULT AND DISCUSSION 

2.1 Discovery of Hafnium-oxide Nanoparticle based Photoresists 

In 2010, we reported our first example of a hafnium oxide nanoparticle resist4. The hafnium oxide nanoparticles were 
used as a core to build the inorganic nanocomposite into an imageable photoresist. Selected ligands on the surface of the 
nanoparticles gave them unique properties, allowing these films to act as positive or negative tone photoresists for 193 nm 
or electron beam lithography. In this work4, two different methods were introduced to produce nanoparticles that can 
form stable suspensions in either water or organic solvents: 1) controlled hydrolysis of hafnium iso-propoxide at 65˚C 
for 21 hours which results in the formation of a white precipitates, which was isolated via centrifugation and then 
washed with acetone; and 2) surface modification of the nanoparticles, in which surface ligands are replaced by other 
carboxylic acids via a direct ligand exchange reaction. 
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desired. The metal oxide nanoparticle based photoresists show promising lithographic performance under EUV 
radiation, besides, their superior etch resistance and extremely small constituent size, are clear advantages for ultimate 
resolution patterning. 
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