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ABSTRACT

This is an overview of the development of Chemical Oxygen-Iodine Laser (COIL) technology in the United States. Key
technical developments will be reviewed, beginning in 1960 and culminating in 1977 with the first COIL lasing
demonstration at the Air Force Weapons Laboratory [now the Phillips Laboratory]. The discussion will then turn to
subsonic laser development, supersonic lasing demonstration and efficiency improvements, and finishing with a brief
discussion of some spin off COIL technologies. Particular emphasis will be placed on how the 02 () generator and O2l7
mixing nozzle technologies evolved.

1. INTRODUCTION

The development of the COIL laser over the past 16 years is a remarkable achievement. The energy source, a chemical
reaction between gaseous chlorine and aqueous basic hydrogen peroxide (BHP), is extraordinarily specific, producing 100%

of the oxygen in the state.2 The electronically excited O2(i) is then used to dissociate a small amount of 12(X) [12/02
0.04]. The laser energy, which is stored in the O2(1t), is then transferred to the iodine atoms3;

I(2P312 ) + °2(') J(2p ) +

= 279cm1

kia = 7.6X1011cm3 /molecule/sec
Keq = 0.75 Exp[402/ TI

and lasing occurs at 1.3 15 jim;

I(2P112 ) + flhVir -* I(2P312 ) + (n + 1)hV,r (2)

At present CO2 and Nd:YAG lasers form the industrial base for laser machining and treatment (cutting, welding, drilling,
surface treatment, etc.). The Nd:YAG lasers are expensive to operate and CO2 laser wavelength (10.6 jim) couple poorly
into meta!s4. The COIL laser can operate in the cw or pulsed mode, the beam quality is inherently very good which insures
narrow beam divergences, the transmission of 1.315 jim radiation through optical fibers is excellent, and the inexpensive
chemicals (KOH, H2O2, Cl2) make the laser a good candidate for industrial application. This paper will detail the
development of COIL technology in the United States and consider the potential for industrial development.

2. FUNDAMENTAL DEVELOPMENTS LEADING TO COIL (1 960-1978)

The fundamental work that lead to the COIL was published over the 18 year period between 1960 and 1978. The
essential demonstrations were: (1) use of chemical reactions to produce population inversions, (2) transfer of energy from
"Hot" chemical reaction products to "Cold" lasing species, (3) lasing on the I(P112) - I(2P312) atomic transition, (4)
development of O2(1) production methods, and (5) recognition that the near resonant energy transfer reaction in Eq. 1 could
produce population inversion and support lasing.

In the 1961 paper by Polanyi5 on chemical lasers he suggested that the vibrationally excited product molecules from
chemical reactions could support lasing at IR wavelengths. In 1965 Kasper & Pimentel demonstrated lasing on HCI
vibrational transitions from flash lamp initiated reaction of H2/C12 mixtures and in 1967 Deutsch and Kompa & Pimentel8
demonstrated pulsed HF lasing. These experiments confirmed that chemical reactions could be used to produce population
inversion and lasing. In 1969 Cool & Stephens9 experimentally showed that a vibrational transfer laser was feasible by
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lasing vibrationally excited CO2 pumped with chemically produced vibrationally excited DF molecules. This was the first
demonstration of a pure CW chemical laser.

The first atomic transition laser was reported in 1964 when Kasper & Pimentel'° operated a photo dissociation iodine
laser;

CX3I+hv,, -* CX3 +J(2P12)[X = H,F} (3)

The electronically excited I(2P112) then lases (see Eq. 2). These experiments set the stage for developing the COIL laser.

Development of chemical O2('A) generators between 1960 and 1979 can be attributed to a number of researchers;
Seliger' 12) Kahn & Kasha13'6, Held
et. al.071, and McDermott and Benard' 18) Kerns'9 published an excellent review in 1971.

BHP is the primary fuel for COIL and is produced by mixing an alkali metal hydroxide, usually NaOH or KOH, with
hydrogen peroxide:

H2 °2 + MOH -* M + °2 H + H20
(excess)

{M=Na,K]
k4 =4X iO4

.H4 =l2kcalI.'nole

This equation shows that BHP is composed of O2ff, H2O2, and H20 with essentially no OW. The standard BHP solutions
used at the Phillips Laboratory are (7-8) molar in 02W, (1-3) molar in H2O2, and about 50% by weight H2O. Excess H2O2 in
the BI-IP is important to avoid excess heat generation from the reaction of Cl2 with OW [excess heat is defmed here as heat
generation that does not lead to O2(A) production]. Singlet delta oxygen is then produced via the exothermic reaction
between chlorine and BHP, a reaction that is postulated to have three steps07, Eqs. 5-7 with the overall reaction shown in
Eq. 8.

02H +C12 -* HOOC1+C1

k5 =2.7X 1010Cm3/moleculelsec

02H + HOOCI - C102 + HO

k6 =

c1o2 - cr + 02(A)
k7 500/sec
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Cl2 +202H -* o2('A)+2cr
AH8 = 27kcalI.inole

Derwent & Thrush3 were the first to recognize that the nearly resonant energy transfer reaction between O2(A) and
atomic iodine, see Eq. (1), could be used to support atomic iodine lasing [Figure 1 shows the energy level diagram].
Although the first attempts failed20'21, McDermott et. al. reported success in 1978. Benard et. al.(18) and Richardson et.
al.22 quickly published papers that established the basic elements for all subsonic COIL lasers to follow.

(4)

(8)
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k7 �500/sec
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Derwent & Thrush'3 were the first to recognize that the nearly resonant energy transfer reaction between O2() and
atomic iodine, see Eq. (1), could be used to support atomic iodine lasing [Figure 1 shows the energy level diagram].
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Figure 1. Chemical Oxygen-Iodine Laser Electronic Energy Level Diagram
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3. PHASE OF COIL DEVELOPMENT IN THE USA (1977-PRESENT)

COIL development in the United States can be divided into four phases (see Table I); (I) subsonic COIL development
(1977-1984), (2) supersonic COIL lasing demonstration (1982-1984), (3) COIL engineering demonstrations (1984-1989),
and (4) COIL efficiency improvements (1990-Present). During this evolution of COIL laser technology several spin off
technologies have also been developed. These include frequency doubling and magnetic gain switching24 25) All of these
topics will be discussed in the following sections.

Table 1. COIL History in the USA. AFWL=Air Force Weapons Laboratory (now the Phillips Laboratory=PL)
KAFB, NM; McD=McDonnell Douglas, Kansas City, MO; TRW=TRW, Redondo Beach, CA; RD=Rockwell Corp.,

Rocketdyne Division, Canoga Park, CA

SPIE Vol. 2502/219

Year Reference Location Cl2 Flow
(moles/sec)

Power
(Watts)

Delta
(W/cm2)

Efficiency

1977 McDermott USA (AFWL) 0.004 .004 2 x 10 1 x

1978 Benard USA (AFWL) 0.03 100 0.8 0.037
1979 Richardson USA (MCD) 0.0 15 10 0.08 1 0.007
1981 Berg USA (TRW) 0.2 2000 6.7 0.11
1981 Truesdell USA (RD) 0.05 150 0.91 0.033
1982 Hager USA (AFWL) 0.6 4600 4.6 0.084
1984 Wiswall USA (McD) 0.02 120 0.067 0.066
1985 Wiswall USA (McD) 0.02 180 0.1 0.10-
1984 Hager USA (AFWL) 0.15 1600 40 0.12
1984 Berg USA (TRW) 0.3 4200 84 0.15

1985 Dickerson 0.15 1900 58 0.14
1987 Truesdell USA (AFWL) 1.55 25000 110 0.18
1988 Truesdell USA (AFWL) 1.55 33000 145 0.23
1989 Truesdell USA (AFWL) 1.8 39000 172 0.24
1991 Truesdell USA(PL) 0.6 I 10000 200 0.18

1993 Helms USA (PL) 0.035 430 153 0.14
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3.1 Phase I: Subsonic COIL Development (1977-1984)

After the initial scaling of COIL from the milliwatts level to 100 watts by Bernard et. the subsonic COIL was
further scaled to 2 kW26, and then to 4.6(27), using exact "sewer pipe quantum engineering'28. During these experiments
the chemical physics of O2(1) production was not well understood, nor were the gas phase kinetic processes involved in
I(2P312) pumping, and I(2P112) deactivation and lasing. Fortunately the forgiving nature of COIL helped lead to success and
the key technical achievements were; (1) an increased understanding of the '2 dissociation process, (2) O2(1A) generator
improvements, and (3) oxygen-iodine mixing nozzle development. Intimately linked to these developments was an
improved understanding of the major COIL loss mechanisms.

3.1.1 12 Dissociation

During the late 1970's and early 1980's many investigators worked on the dissociation of 12 by O2(') and an excellent
review is presented by Heidner et. al. (29, 30) Heidner's proposed auto-catalytic chain mechanism for '2 dissociation is
initiated by one or a combination of four reactions:

O(3P)+12(X) J(2 P312)+IO (9)

°2 ( ) + 12(X) 21(2 "3/2) +
k10 = 10cm3 Imolecule/sec (10)

AH10 = 1.6kcal/mole

02(A) + 12(X) '2 (X) +
k11 = 7 X 10'5 cm3 /molecule/sec

I2*(X)+O2( ) 21(2 P O2()
[3X10'' <k12 <3X10'° (12)

cm3 / molecule / sec]

and the I(2P312) atoms formed are pumped to I(2P1) via Eq. 1. Chain branching occurs by Eq. 11 or when 12(X) collides with
I(2P112) to fom1 12(X);

J(2 'I/2 ) + 12(X) '2 (X) + J(2 P)
k13 =3.5X 1011cm3/molecule/sec

(13)

The 12*(X) formed in Eqs. 11 and 13 then dissociates into I(2P312) atoms upon collision with O2(') [Eq. 12] or collision
with I(2P1/2):

12 (X) + J(2P) -9 3J(2 P) (14)

Although the iodine intermediate 12*(X) has not been observed directly the evidence strongly suggests it is vibrationally
excited 12(X) and not one of the low lying triplet 12(A) electronic states30' 31)

These investigations lead to the idea that initiation of the 12 dissociation in the high pressure nozzle plenum may be
preferable to supersonic injection and mixing of 12 with O2(i).
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3.1.2 Major COIL Loss Mechanism

Sinlet oxygen pooling and wall deactivation determine the maximum 02('A) that can be delivered to the COIL laser
cavity2

°2( )+ O(' ) * O2() °2()
kl5a = 2 X 1017cm3 /molecule/sec (1 5a)

= 8 .9 kcal/mole

O2(')+MO2(3)+M
kj5b = 102 cm3 Imoleculelsec (15b)

'15b =l5kcal/mole

°2() M °2() M
k15 = 2 X 105 cm3 /molecule/sec (15c)

l5c = 22kcallmole

In smaller devices Eq. 15c is important and in larger lasers Eqs. 15a and 15b dominate the loss mechanism.

The second major loss in COIL is caused by water deactivation of both the lasing species [I(2P312)] and the 12
dissociation intermediate [12(X)]:

j(2 P112)H2° J(2 P112)+H20

k16 = 1.7 X 10'2 cm3 Imoleculelsec
= 22kcal/mole

I2*(X)+H2O 12(X)+H20
k17 =3X 10'°cm3lmolecule/sec

3.1.3 Sparger °2() Generators

The first O2('i) generators used for COIL lasers were chemical sparger types [see Figure 2] where chlorine gas is
bubbled through a column of BHP. The efficiency of these generators depends on the height of the liquid column above the
Cl2 injection, the residence time of the C12/02 in the generator gas bubbles, the volume of the transport ducts and the
temperature of the bulk BHP. The O2('L) yield depends on the Cl2 injector hole size and depth below the BHP solution26'27'
28) Proper adjustment of these parameters will result in chlorine utilization near 100% [see Figure 3]. Performance is also
affected by the presence of diluent gases such as helium and optimum generator performance occurs at lower "bubble"
residence times and lower Cl2 injection depths as the He:C12 ratio is reduced.

The measured O2(L) yield existing sparger reactors operating in the ton pressure range is near 5Ø%(34) The losses that
contribute to this yield are; (1) liquid phase losses (about 0.04 yield points), (2) O2(') pooling loss in the gas 'bubble'
(about 0.36 yield points), (3) generator wall quenching losses (about 0.03 yield points), and (4) duct transport loss (about
0.06 yield points). Dimole emission losses are negligible because of the weakness of the transition [10 to iø times lower
than O2() pooling].

Another factor that contributes to the efficiency of these generators is the bulk BHP temperature. The lower the
temperature, the lower the H2O partial pressure leaving the generator. Operating at lower temperatures can be accomplished
by lowering the solution freezing point with increased concentrations of ions. This has been achieved by switching from
sodium BHP (NaOH + H202) with a freezing point of -260 K for a 3.5 molar solution to potassium BHP (KOH + H202) with
a freezing point of 230 K for 8 molar solutions.
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Figure 3. Chlorine Utilization as a Function of Chlorine Injector Depth for the COIL IV Sparger (Ref. 27)

3.1.4 Subsonic COIL O2I2 Mixing Nozzles

Based on early results0' 1S 22) it was believed that '2 dissociation would be rapid, I(2P112) deactivation would be minimal,
and cavity gain would hold up for tens of centimeters, even at low subsonic velocities projected for COIL IV(381.

Consequently early subsonic mixing nozzles were coarse [see Figure 4a] and the laser performance was very poor [the SSG,
iodine dissociation, and power varied quite substantially and unpredictabIy]27. These results can be explained by the poor
diffusion of the secondary jets into the primary flow [see the laser induced fluorescence (LIF) data in Figure 5]. A series of
sub-scale LIF investigations of the dynamics of jet expansion, pressure matching, and diffusion mixing scale [see Figure 6]
was undertaken27' 39), resulting in a new injector with more, smaller diameter holes situated perpendicular and parallel to the
flow direction {see Figure 4c]. To obtain "good mixing" with these nozzles, secondary to primary flow ratios approaching
one were required. The higher relative secondary flows throttled the primary flow, increased the system pressures, and
increased the O2(L) pooling losses27. This effect required a compromise between good mixing [high secondary flow] and
high generator efficiency [lower secondary flow].

Further optimization of subsonic mixing nozzles was not attempted in the United States after running these COIL IV
experiments. At this point the emphasis in COIL research turned to supersonic COIL laser.
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3.1.4 Subsonic COIL O2I2 Mixing Nozzles

Based on early results1' 18, 22) it was believed that 12 dissociation would be rapid, I(2P112) deactivation would be minimal,
and cavity gain would hold up for tens of centimeters, even at low subsonic velocities projected for COIL iv38.
Consequently early subsonic mixing nozzles were coarse [see Figure 4a] and the laser performance was very poor [the SSG,
iodine dissociation, and power varied quite substantially and unpredictably]27. These results can be explained by the poor
diffusion ofthe secondaryjets into the primary flow [see the laser induced fluorescence (LIF) data in Figure 5]. A series of
sub-scale LIF investigations of the dynamics ofjet expansion, pressure matching, and diffusion mixing scale [see Figure 6]
was undertaken27' 39), resulting in a new injector with more, smaller diameter holes situated perpendicular and parallel to the
flow direction [see Figure 4c]. To obtain "good mixing" with these nozzles, secondary to primary flow ratios approaching
one were required. The higher relative secondary flows throttled the primary flow, increased the system pressures, and
increased the O2('E) pooling losses27. This effect required a compromise between good mixing [high secondary flow] and
high generator efficiency [lower secondary flow].

Further optimization of subsonic mixing nozzles was not attempted in the United States after running these COIL lV
experiments. At this point the emphasis in COIL research turned to supersonic COIL laser.
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3.2 Phase II: Supersonic COIL Lasing Demonstration (1982-1984)

Supersonic COIL development was motivated for three reasons; first to reduce the size ofthe device, second to lower the
cavity operating temperature [increasing the device efficiency, and third to stretch the stream wise gain zone [reducing the
density gradients which degrade beam quality].

The size reduction offered by supersonic operation is illustrated in Figure 7 which shows COIL IV, a 4 meter long
subsonic COIL laser, and the 25 cm long nozzle from ReCOIL, the first supersonic COIL32 [both lasers were comparable in
power, see Table 1].
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Figure 4. COIL IV 7-Hole and 38-Hole Iodine Injector (Ref. 27)
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Figure 5. COIL IV 7 Hole injector LIF Photographs (Ref. 27)
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The advantage of lower operating temperature can be evaluated by observing that the threshold lasing condition j5(17);
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TT

[O2('E)]
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- (18)
[02(TotaO] - 2Keq + 1

where Keq is defined in Eq. lb. At room temperature th = 0.15, and in a Mach 2 flow [T 150 K] th 0.04, a considerable
improvement in the power available [0.11 yield points].

Beam Quality improvements are less obvious. The energy in the laser is stored in the O2('z) which is nearly resonant
with the upper laser level [12P112, see Figure 1]. Since the ratio of iodine atoms to total oxygen is small [typically 0.05],
each iodine atom is repumped many times throughout the flow field during the lasing process. Efficient power extraction
requires large circulating fluxes resulting in short extraction distances [sugar scooping] and steep thermal density gradients
which degrade beam quality. The higher velocities in supersonic COIL results in power extraction over longer stream wise
distances and the circulating power and density variations will be more uniform across the optical aperture.

In 1980 when the initial supersonic COIL demonstration was being considered, sparger O2(1) generators were the only
well characterized sources to power the laser. Since higher operating pressures are required the transport volume would have
to be minimized and smaller more efficient cold trap would have to be employed.

The most difficult issue, mixing the heavy secondary molecular '2 into the primary O2(') stream, was addressed with a
mach 2 nozzle where the 12 is injected transverse to the primary stream in the subsonic region of the nozzle40. The
transverse subsonic injection enhanced mixing and helped initiate the auto-catalytic 12-dissociation mechanism proposed by
Heidner. From a purely kinetic standpoint the dissociation should occur more rapidly in the high pressure subsonic section
of the nozzle.

With the elements discussed above a 25 cm gain length device (ReCOIL) was designed, built, and tested at the Phillips
Laboratory [see Figure 8]. Testing of this device resulted in the first successful demonstration of a supersonic COIL. A
second sparger driven supersonic COIL was demonstrated in 1984 at TRW33.
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Figure 8. Schematic of the ReCOIL System

3.3 Phase III: COIL Engineering Demonstrations (1984-1989)

The essential features of the supersonic COIL are illustrated in Figure 9 and the four areas that required refinement are;
(1) O2(L) generator operation at high pressure, (2) efficient O2() transport, (3) water removal, and (4) efficient 02-12
mixing. These issues will be discussed in the following subsections.
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The advantage oflower operating temperature can be evaluated by observing that the threshold lasing condition j5(17);

(18)

where Keq 5 defmed in Eq. lb. At room temperature th =• 15, and in a Mach 2 flow [T 1 50 K] th 004 a considerable
improvement in the power available [0. 1 1 yield points].

Beam Quality improvements are less obvious. The energy in the laser is stored in the 02('L\) which is nearly resonant
with the upper laser level [12P112, see Figure 1]. Since the ratio of iodine atoms to total oxygen is small [typically � 0.05],
each iodine atom is repumped many times throughout the flow field during the lasing process. Efficient power extraction
requires large circulating fluxes resulting in short extraction distances [sugar scooping] and steep thermal density gradients
which degrade beam quality. The higher velocities in supersonic COIL results in power extraction over longer stream wise
distances and the circulating power and density variations will be more uniform across the optical aperture.

In 1980 when the initial supersonic COIL demonstration was being considered, sparger O2('A) generators were the only
well characterized sources to power the laser. Since higher operating pressures are required the transport volume would have
to be minimized and smaller more efficient cold trap would have to be employed.

The most difficult issue, mixing the heavy secondary molecular 12 into the primary O2('z) stream, was addressed with a
mach 2 nozzle where the '2 is injected transverse to the primary stream in the subsonic region of the nozzle40. The
transverse subsonic injection enhanced mixing and helped initiate the auto-catalytic 12-dissociation mechanism proposed by
Heidner. From a purely kinetic standpoint the dissociation should occur more rapidly in the high pressure subsonic section
of the nozzle.

With the elements discussed above a 25 cm gain length device (ReCOIL) was designed, built, and tested at the Phillips
Laboratory [see Figure 8]. Testing of this device resulted in the first successful demonstration of a supersonic COIL. A
second sparger driven supersonic COIL was demonstrated in 1984 at TRW33.

Figure 8. Schematic of the ReCOIL System

3.3 Phase III: COIL Engineering Demonstrations (1984-1989)

The essential features of the supersonic COIL are illustrated in Figure 9 and the four areas that required refinement are;
(1) 02('A) generator operation at high pressure, (2) efficient O2() transport, (3) water removal, and (4) efficient 02-12
mixing. These issues will be discussed in the following subsections.
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3.3.1 Rotating Disk 02(A) Generators

The first supersonic COIL lasers were operated with sparger oxygen generators32' 33), however improving the efficiency
of the COIL using these generators is limited28. An oxygen generator that has more BHP surface area, less generator
volume, less transport duct volume, and more rapid BHP surface replenishment was needed. Although spray or aerosol
reactors could potentially solve these problems, in the early 1980s, compact efficient spray O2('t) generators had not been
developed, and did not look particular promising41. Harpole et. al.42, developed a rotating disk oxygen generator [see
Figure 10] where multiple, thin, disks were stacked together and partially immersed in a pool of BHP. The disks were
rotated at 20 rpm wetting the disks with a BHP film [about 0.03 cm thick on each side]. The Harpole Roto Generator,
described elsewhere42, produced 40% to 60% O2(), 90% chlorine utilization with a chlorine flow rate of (0.5-0.6)
mole/sec, He/Cl2 = 3 or 4, and a generator pressure of 40 to 60 torr436. This generator was an important develoFment
required to produce efficient supersonic lasers and an excellent review of its operation is reported by Dickerson et. ai. 7) and
Copeland et. a1.48.
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Figure 10. Harpole Rotating Disk Oxygen Generator (Ref. 42)

KOH + H202
(BHP)

12

KOH + H202
(BHP)

1J

Heat KCI
(salt)

REACTANT
EXHAUST

The first supersonic COIL lasers were operated with sparger oxygen generators32' 33),however improving the efficiency
of the COIL using these generators is 1imited28. An oxygen generator that has more BHP surface area, less generator
volume, less transport duct volume, and more rapid BHP surface replenishment was needed. Although spray or aerosol
reactors could potentially solve these problems, in the early 1980s, compact efficient spray O2() generators had not been
developed, and did not look particular promising4. Harpole et. al.42, developed a rotating disk oxygen generator [see
Figure 10] where multiple, thin, disks were stacked together and partially immersed in a pool of BHP. The disks were
rotated at 20 rpm wetting the disks with a BHP film [about 0.03 cm thick on each side]. The Harpole Roto Generator,
described elsewhere42, produced 40% to 60% O2('), 90% chlorine utilization with a chlorine flow rate of (0.5-0.6)
mole/sec, He/Cl2 = 3 or 4, and a generator pressure of 40 to 60 torr'436. This generator was an important development
required to produce efficient supersonic lasers and an excellent review of its operation is reported by Dickerson et. al. 7)and
Copeland et. a1.48.
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3.3.2 Water Vapor Control

The importance of water vapor control45' 46, 49) is shown in Figure II [note the monotonic power decrease as the water
mole fraction is increased'50]. To minimize this effect two approaches have been used; (1) vapor cold traps to remove water
and (2) lower BHP bath temperature to prevent water vapor formation. The cold trap method works well for subsonic lasers
where the pressures are low (Ton range) and the added volume [O2(1z) residence time] between the oxygen generator and
laser cavity do not contribute significantly to O2('z) pooling [see Eq. 14a]. In supersonic COIL lasers, where the pressures
are significantly higher (10's of Ton range), the pooling losses associated with any added transport volume become
unacceptab1e5[note, in Eq. 15a, the quadratic dependence of pooling loss as O2(z\) pressure increases].
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Figure 11. COIL Power as a Function of Water Mole Fraction (Ref. 50)

3.3.3 Supersonic 02-12 Mixing Nozzles

There are four critical nozzle dimensions that require adjustment in a supersonic COIL nozzle; (1) the throat size and
nozzle expansion ratio, (2) the '2 injection hole size(s) and distribution, (3) the location of the 12 in,jection hole(s) relative to
the nozzle throat, and (4) the resonator location relative to the nozzle exit plane [see Figure l2]40). The most surprising
aspect of this design is its forgiving nature relative to more traditional HF/DF chemical lasers'52. A COIL nozzle with a 0.6
cm throat, an exit area to throat area ratio of 2:1, and a double set of sonic 12 injection orifices located (1.0-1.3) cm upstream
of the sonic throat works well over a wide range of operating conditions. In particular, nozzle plenum pressures as low as 11
ton (He/Cl2 = I )(32) and as high as 70 ton (He/Cl2 4)(46) have been demonstrated. Power optimization with fixed nozzle
hardware depends on O2() generator performance, secondary flow rate and plenum pressure [12 penetration], 12/02 ratio,
flow composition, and water5'& However these nozzle designs have worked well when the parameter space is optimized46.

Applying the LIF technique to supersonic nozzles shows how under penetrated secondary settings prevent the primary
and secondary from ever fully mixing [Figure 13], and when the secondary fully penetrates to the flow center line before the
nozzle throat, good '2 mixing is evident at the nozzle exit plane40.

3.3.4 The RotoCOIL Laser

The RotoCOIL laser [see Figure 14] represents the culmination of the engineering and efficiency demonstration phase of
the COIL program. Three oxygen generators were used instead of one large one for reasons of expediency and in spite of
such engineering short comings, the laser is the most efficient multiple kilowatt COIL ever built Eff 1ineasured"(9' X ë I) =

More detailed discussions of the performance of RotoCOIL are presented elsewhere43 . 54)

3.3.2 Water Vapor Control

The importance of water vapor controi' 46,49) is shown in Figure 1 1 [note the monotonic power decrease as the water
mole fraction is increased50J. To minimize this effect two approaches have been used; (1) vapor cold traps to remove water
and (2) lower BHP bath temperature to prevent water vapor formation. The cold trap method works well for subsonic lasers
where the pressures are low (Torr range) and the added volume [O2(1\) residence time] between the oxygen generator and
laser cavity do not contribute significantly to 07(1A) pooling [see Eq. 14a]. In supersonic COIL lasers, where the pressures
are significantly higher (10's of Torr range), the pooling losses associated with any added transport volume become
unacceptable51[note, in Eq. 15a, the quadratic dependence ofpooling loss as O2(1z\) pressure increases].

1.00

1.00

..t0.60 .

0.40

0.20

0.00 - . I

0.00 0.16 0.32 0.48 0.64 0.80

Whole Mole Fraction

Figure 11. COIL Power as a Function of Water Mole Fraction (Ref. 50)

3.3.3 Supersonic 22 Mixing Nozzles

There are four critical nozzle dimensions that require adjustment in a supersonic COIL nozzle; (1) the throat size and
nozzle expansion ratio, (2) the 12 injection hole size(s) and distribution, (3) the location of the 12 injection hole(s) relative to
the nozzle throat, and (4) the resonator location relative to the nozzle exit plane [see Figure The most surprising
aspect of this design is its forgiving nature relative to more traditional HF/DF chemical lasers'52. A COIL nozzle with a 0.6
cm throat, an exit area to throat area ratio of 2: 1, and a double set of sonic 12 injection orifices located (1 .0-1 .3)cm upstream
of the sonic throat works well over a wide range of operating conditions. In particular, nozzle plenum pressures as low as I 1
ton (He/Cl2 = 1)(32) and as high as 70 ton (He/Cl2 = 4)(46) have been demonstrated. Power optimization with fixed nozzle
hardware depends on O2(1) generator performance, secondary flow rate and plenum pressure [12 penetration], 12/02 ratio,
flow composition, and water5. However these nozzle designs have worked well when the parameter space is optimized46.

Applying the LIF technique to supersonic nozzles shows how under penetrated secondary settings prevent the primary
and secondary from ever fully mixing [Figure 13], and when the secondary fully penetrates to the flow center line before the
nozzle throat, good '2mixing is evident at the nozzle exit plane40.

3.3.4 The RotoCOIL Laser

The RotoCOIL laser [see Figure 14] represents the culmination of the engineering and efficiency demonstration phase of
the COIL program. Three oxygen generators were used instead of one large one for reasons of expediency and in spite of
such engineering short comings, the laser is the most efficient multiple kilowatt COIL ever built [Eff = rneasured'(9' X Cl) =

More detailed discussions of the performance of RotoCOIL are presented elsewhere436' 54)
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The saturation and extraction behavior of the COIL laser requires a comment. The RotoCOIL laser saturation curve is
shown in Figure 15 and although the Rigrod analysis can be applied45' 46, 54), the existence of a distributed loss in the gain
medium is not experimentally well demonstrated. Mirror scattering and diffraction losses can also explain this saturation
curve53. This issue is still being investigated.
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The saturation and extraction behavior of the COIL laser requires a comment. The RotoCOIL laser saturation curve is
shown in Figure 15 and although the Rigrod analysis can be applied45' 46, 54), the existence of a distributed loss in the gain
medium is not experimentally well demonstrated. Mirror scattering and diffraction losses can also explain this saturation
curve53. This issue is still being investigated.
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3.4 Phase IV: COIL Efficiency Improvements (1990-Present)

By the 1990s the focus of device development shifled from engineering demonstrations to device efficiency
improvements. These improvements required a multifaceted approach, including modifying hardware, modeling, and
developing new diagnostics. Modification of the COIL hardware has concentrated on the O() generators. The first
area of generator improvement is thermal and salt management of the BHP solution. As mentioned earlier COIL
performance is limited to short run durations La few' seconds] caused bi' the heat release in the oxygen generators and the
subsequent water vapor build up (see Eq. 8 and Figure 11). To counter this effect cold BHP was flowed through the
rotogenerator to control the temperature of the BHP reaction zonet513. Steady power performance for up to four minuets was
demonstrated using this methodology. Current closed-loop experiments have shown that recondition BHP in "real time" is
possible [see Figure
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Further generator improvement requires methods to increase BHP surface area, reduce generator gas volume, and
increase the reaction zone [02H] replacement rate. During the 19S0s spray reactors aimed at addressin these issues
were postulatedt563 but failed because the BHP aerosol could not be efficiently separated from the gas stream413. In 1988,
development began on a new type of droplet reactor that was capable of producing droplets of uniform diameter, which
greatly simplified the liquid separation process7. Several versions of this generator have been tested58' 59) and by design
the droplet generator is a flowing BHP system that will minimize H2O production.

The early stages of COIL modeling in the USA concentrated on the gas phase [kinetics of O,(1) reactions, '2
dissociation, and cavity kinetics]. Excellent reviews of these studies are available'9'

30. 34. 48, 60) Although the three step
Hurst mechanism (see Eqs. 5-7) for the Cl,-BHP reaction was proposed in 1978 and several investigators worked on
measuring the reaction rates . it was not until recently that modeling emphasis turned to the Cl,/BI- diffusionlreaction
mechanismt633 and solving the coupled nonlinear differential equations describing the Cl2 utilization and O,(1) yield in
terms of the CL, and O() concentrations in the bulk gas and the O,H concentration at the surface of the liquid B}65' 65),

Recent advances in computer memory and speed has also allowed tackling the 3-D Navier-Stokes analysis of the 12-02
mixing in supersonic COIL nozzles. For the first time an end to end analysis of COIL is at hand and early results are
encouraging. An example of this progress is shown in Figure 17 which compares recent I, nozzle distribution predictions
with '2 LIF data taken 10 years ago69.

Improving our fundamental understanding of COIL through improved diagnostic techniques continues to be an
essential element of COIL development. Iodine dissociationt70. and small signal gain7 diagnostics have been developed
and used on a slit nozzle configuration. In addition a new' diode laser based water vapor diagnostic has been developedt723
and used on the same nozzlet7. A new absorption technique for accurately determining the yield of 0(1) in the laser
cavity is also being developed72.

3.4 Phase IV: COIL Efficiency Improvements (1990-Present)

By the 1990s the focus of device development shifted from engineering demonstrations to device efficiency
improvements. These improvements required a multifaceted approach, including modifying hardware, modeling, and
developing new diagnostics. Modification of the COIL hardware has concentrated on the O(1) generators. The first
area of generator improvement is thermal and salt management of the BHP solution. As mentioned earlier COIL
performance is limited to short run durations [a few secondsi caused by the heat release in the oxygen generators and the
subsequent water vapor build up (see Eq. 8 and Figure 1 1). To counter this effect cold BliP was flowed through the
rotogenerator to control the temperature ofthe BHP reaction zone51. Steady power performance for up to four minuets was
demonstrated using this methodology. Current closed-loop experiments have shown that recondition BHP in "real time" is

possible [see Figure 16]'.

Further generator improvement requires methods to increase BHIP surface area. reduce generator gas volume, and
increase the reaction zone EOH1 replacement rate8. During the 1980's spray reactors aimed at addressing these issues
were postulated56 but failed because the BHP aerosol could not be efficiently separated from the gas stream41. In 1988,
development began on a new type of droplet reactor that was capable of producing droplets of uniform diameter, which
greatly simplified the liquid separation process7. Several versions of this generator have been tested58'59) and by design
the droplet generator is a flowing BHP system that will iiiniiiiize H,O production.

The early stages of COIL modeling in the USA concentrated on the gas phase [kinetics of O2(1) reactions, 12
dissociation. and cavity kineticsj. Excellent reviews of these studies are available9 O.3.. 48. 60) Although the three step
Hurst mechanism (see Eqs. 5-7) for the Cl,-BHP reaction was proposed in 1978 and several investigators worked on
measuring the reaction rates . it was not until recently that modeling emphasis turned to the Cl,/BHP diffusion/reaction
mechanism63 and solving the coupled nonlinear dillerential equations describing the Cl, utilization and O2(1) yield in
terms of the Cl, and O2(/.) concentrations iii the bulk gas and the OH concentration at the surface of the liquid BF65' 65)

Recent advances in computer memory and speed has also allowed tackling the 3-D Navier-Stokes analysis of the 12-02
mixing in supersonic COIL nozzles. For the first time an end to end analysis of COIL is at hand and early results are
encouraging. An example of this progress is shown in Figure 17 which compares recent I, nozzle distribution predictions
with I, LIF data taken 10 years ago69.

Improving our fundamental understanding of COIL through improved diagnostic techniques continues to be an
essential element of COIL development. Iodine dissociation70. and small signal gain71 diagnostics have been developed
and used on a slit nozzle configuration. In addition a new diode laser based water vapor diagnostic has been developed72
and used on the same nozz1e7. A new absorption technique for accurately determining the yield of O,(1) in the laser
cavity is also being developed7.
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Figure 16. VertiCOlL Closed-Cycle BHP System Schematic
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COIL work in the future will focus mainly on improving the chemical efficiency and BHP usage in order to reduce the
size, weight, and costs of COIL. If COIL is to survive as a viable laser, transition to the private section will be an important
objective during the next few years.

LIF Data MINT Calculation

Figure 17. Comparison of 12 Distribution in COIL Nozzles.

4. SPIN OFF COIL TECHNOLOGY

Two spin off COIL technologies will be discussed, frequency doubling and magnetic gain switching.

4.1 COIL Frequency Doubling

A series of extra cavity frequency doubling tests were performed using the RotoCOIL laser23. The diffraction limited
output from the IR laser was tihtly focused into LiIO3, [selected for doubling due to its large nonlinear optical coefficient,
low absorption, and availability74]. Crystal lengths of 1.1 cm and 2.2 cm were used and conversion efficiencies of 8% were
achieved resulting in visible (657 nm) cw outputs of nearly 700 W [see Figure 18]. Catastrophic crystal failure occurred
after a 1 sec exposure to a focused beam of 6.8 kW.

Pump La.r: t3l5pm
$, kW

CytaI: 1.003
DouMed L,.r: 0.U1$M

0.1IW
Emc1.ncy 30%

Figure 18. Photograph of the Red Laser Light at 657 nm from LiIo3 Crystal Pumped With RotoCOIL 1.315 mm
Laser.
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4.1 COIL Frequency Doubling

A series of extra cavity frequency doubling tests were performed using the RotoCOIL 1aser23. The diffraction limited
output from the IR laser was tightly focused into LiIO3, [selected for doubling due to its large nonlinear optical coefficient,
low absorption, and availability74]. Crystal lengths of 1.1 cm and 2.2 cm were used and conversion efficiencies of 8% were
achieved resulting in visible (657 nm) cw outputs of nearly 700 W [see Figure 18]. Catastrophic crystal failure occurred
after a 1 sec exposure to a focused beam of 6.8 kW.
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4.2 Receptively Pulsed COIL

For the past several years the Phillips Laboratory has been developing a gain switched COIL24' 25) and the field-nulling
gain-switched concept is illustrated in Figure 19. The Figure shows theoretical calculations of the iodine hyperfine spectrum
for zero field [Figure 19a], and for a 400 gauss magnetic field, P polarization [Figure 19b] and S polarization [Figure 19d].
Figure 19c shows schematically the hardware arrangement and the operating sequence is as follows. Initially a static
magnetic field of 400 gauss is applied to the cavity by an external permanent magnet [Figure 19c]. The cavity out coupler is
chosen so that the static magnetic field suppresses the gain below the lasing threshold condition. A fast rising current pulse
is then applied to the field coils [Figure 19c] with a polarity that nulls out the cavity magnetic field. The gain suddenly rises
above threshold to its zero field condition (Figure 20a) and a laser pulse is extracted from the medium. Once the laser pulse
has been extracted, the current in the field coils is shut off turning the cavity field back on. The cavity refills with fresh gain
media and the process is repeated producing a train of pulses.

C

E 0.5
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Figure 19. Concept of Nulling Cain Switch COIL

Figure 20 shows a sample data set for a 500 Hz gain-switch experiment. Figure 20a shows the temporal profile of a
single laser pulse and Figure 20b shows the associated Helmholtz coil current [along with the estimated magnetic field
strength]. In Figure 20, once the pulsed field has canceled the permanent magnetic field [approximately (0.3 - 0.5) is] there
is a time delay of about 3 l.Ls before the power spike occurs; this is the cavity mode buildup time. The peak power (W,9
is) is nearly 39 kW and represents the energy stored in the I(2P112). At the end of the gain switch spike, singlet delta l( P112)

repumping by O2(s) and the cavity resonator parameters control the remainder of the pulse until the steady lasing begins at
approximately 20 .ts [Pcw = 3 kW]. At about 35 .ts, the current pulse ramps down forcing the gain below threshold, shutting
the laser off. The peak power enhancement [peak power/cw power] is about 13 and the integrated energy is 0.2 joules.
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For the past several years the Phillips Laboratory has been developing a gain switched COIL24' 25) and the field-nulling
gain-switched concept is illustrated in Figure 19. The Figure shows theoretical calculations of the iodine hyperfine spectrum
for zero field [Figure 19a, and for a 400 gauss magnetic field, P polarization [Figure 19b] and S polarization [Figure 19d].
Figure 19c shows schematically the hardware arrangement and the operating sequence is as follows. Initially a static
magnetic field of400 gauss is applied to the cavity by an external permanent magnet [Figure 19cJ. The cavity out coupler is
chosen so that the static magnetic field suppresses the gain below the lasing threshold condition. A fast rising current pulse
is then applied to the field coils [Figure 1 9c1 with a polarity that nulls out the cavity magnetic field. The gain suddenly rises
above threshold to its zero field condition (Figure 20a) and a laser pulse is extracted from the medium. Once the laser pulse
has been extracted, the current in the field coils is shut off turning the cavity field back on. The cavity refills with fresh gain
media and the process is repeated producing a train of pulses.
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Figure 20 shows a sample data set for a 500 Hz gain-switch experiment. Figure 20a shows the temporal profile of a
single laser pulse and Figure 20b shows the associated Helmholtz coil current [along with the estimated magnetic field
strength. In Figure 20, once the pulsed field has canceled the permanent magnetic field [approximately (0.3 - 0.5) .ts] there
is a time delay of about 3 .ts before the power spike occurs; this is the cavity mode buildup time. The peak power (W111 I

j.ts) is nearly 39 kW and represents the energy stored in the I(2P112). At the end of the gain switch spike, singlet delta I( P112)
repumping by O2(L) and the cavity resonator parameters control the remainder of the pulse until the steady lasing begins at
approximately 20 .ts [Pcw = 3 kWJ. At about 35 .ts, the current pulse ramps down forcing the gain below threshold, shutting
the laser off. The peak power enhancement [peak power/cw power] is about 1 3 and the integrated energy is 0.2 joules.
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Figure 20. Experimentally Measured a) Laser Pulse, and b) Field Nulling Current Pulse.

CONCLUSION

In this paper we have reviewed the key technical developments leading to the invention and refinement of the COIL
laser in the United States. The story covers the 34 year period between 1960 and the present. The current oxygen generator
and nozzle concepts are proven and the laser best operates at the kW and higher level. The excellent fiber transmission
makes the laser a candidate to be used in a situation where one (10-50) kW unit can feed several work stations75. The laser
operates at a good wavelength [1.315 .tm], offers excellent beam quality, and good beam deliverability [optical fiber
transmission]. These characteristics along with the inexpensive chemicals that power the laser make COIL a viable candidate
for industrial development.
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5. CONCLUSION

In this paper we have reviewed the key technical developments leading to the invention and refinement of the COIL
laser in the United States. The story covers the 34 year period between 1960 and the present. The current oxygen generator
and nozzle concepts are proven and the laser best operates at the kW and higher level. The excellent fiber transmission
makes the laser a candidate to be used in a situation where one (10-50) kW unit can feed several work stations75. The laser
operates at a good wavelength [1.3 15 tm], offers excellent beam quality, and good beam deliverability [optical fiber
transmission]. These characteristics along with the inexpensive chemicals that power the laser make COIL a viable candidate
for industrial development.
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