X-ray diffraction-based baggage screening provides the potential for the material sensitivity needed to realize high detection probabilities and low false alarm rates. However, the combination of noisy signals, variability in the XRD form factors based on slight material differences, and incomplete material libraries lead to decreased system performance. By using a machine learning classification approach to XRD-based explosives detection, we show that the probability of error can be reduced relative to traditional, correlation-based classifiers. This improved performance exists at a variety of noise levels and degrees of library completeness, and indicates a path toward increased XRD-based classifier robustness.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.