This paper presents the analysis of a prototype scanning electrostatic force microscope (SEFM) system developed for noncontact surface profile measurement. In the SEFM system, with a dual height method, the distance between the probe tip and the sample surface can be accurately obtained through removing the influence of the electric field distribution on the sample surface. Since the electrostatic force is greatly influenced by the capacitance between the probe tip and the sample surface, a new approach for modeling and analysis of the distribution of capacitance between the probe tip with an arbitrary shape and the sample surface with a random topography by using the finite difference method (FDM) is proposed. The electrostatic forces calculated by the FDM method and the conventional sphere-plane model are compared to verify the validity of the FDM method. The frequency shift values measured by experiment are also compared with the simulation results computed by the FDM method. It has been demonstrated that the electrostatic force between arbitrary shapes of the probe tip and the sample surface can be well calculated by the finite difference method.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.