Siyuan Dai, Qiong Ma, Zhe Fei, Mengkun Liu, Michael Goldflam, Trond Andersen, William Garnett, Will Regan, Martin Wagner, Alexander McLeod, Alexandr Rodin, Shou-En Zhu, Kenji Watanabe, T. Taniguchi, Gerado Dominguez, Mark Thiemens, Antonio Castro Neto, Guido C.A. Janssen, Alex Zettl, Fritz Keilmann, Pablo Jarillo-Herrero, Michael Fogler, Dmitri Basov
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the “hyperlens” for subdiffractional focusing and imaging using a slab of hBN [3].
References
[1] S. Dai et al., Science, 343, 1125 (2014).
[2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015).
[3] S. Dai et al., Nature Communications, 6, 6963 (2015).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.