KEYWORDS: Light scattering, Scattering, Polarization, Polarimetry, 3D modeling, Photon polarization, Environmental sensing, 3D metrology, Monte Carlo methods, Mie scattering
A three-dimensional (3D) polarimetric tracking model is proposed to calculate scattering interactions between light and media, where a 9×1 coherency or Stokes vector is used to represent the scattered 3D polarized light. Compared with the present Monte Carlo program, this model not only address the continuous rotations problem of the reference plane at least 2 to 3 times, but also realizes the statistics tracking of 3D vibration distribution (i.e., 3D polarization state) for the scattered light in real time. In this paper, we introduce two 3D cartesian coordinate systems: a global coordinate system of an entire scattering environment, and a local coordinate system of a scattering event. Within the proposed 3D polarimetric tracking model, the polarization transformation effect (PTE) related to every scattering event is preciously tracked in corresponding local coordinate system, and the calculated 3D PTE has a 9×9 coherency transformation matrix or Mueller matrix mathematically. Importantly, by utilizing only one rotation of coordinate system, the final 3D polarization transformation effect of an entire scattering environment can be uniquely determined by successive multiplication of all 9×9 matrices characterizing scattering events. The study can be widely applied in several applications of biomimetic polarization navigation, remote sensing, marine surveillance and environmental security to preciously quality the PTE of multitudinous scattering environments.
According to the requirement of a wide-viewing-angle retroreflector (WVAR) that the max divergence angle cannot exceed 9 mrad, we have made an optimal design of WVAR with radius of 30 mm (n=1.95375@ wavelength of 632.8 nm) to be used to be the reference light in polarization interferometry. Therefore, it is particularly important to calculate its polarization properties accurately. We have applied the three-dimensional (3D) coherency polarization calculus to analyze the designed WVAR, and the theoretical results are in agreement with the simulation results by the FRED software. Finally, it can be concluded that the designed WVAR has a very good ability of polarization-maintaining.
As an important part of machine vision, compound eye optical systems have the characteristics of high resolution and large FOV. By applying the compound eye optical systems to target detection and recognition, the contradiction between large FOV and high resolution in the traditional single aperture optical systems could be solved effectively and also the parallel processing ability of the optical systems could be sufficiently shown. In this paper, the imaging features of the compound eye optical systems are analyzed. After discussing the relationship between the FOV in each subsystem and the contact ratio of the FOV in the whole system, a method to define the FOV of the subsystem is presented. And a compound eye optical system is designed, which is based on the large FOV synthesized of multi-channels. The compound eye optical system consists with a central optical system and array subsystem, in which the array subsystem is used to capture the target. The high resolution image of the target could be achieved by the central optical system. With the advantage of small volume, light weight and rapid response speed, the optical system could detect the objects which are in 3km and FOV of 60°without any scanning device. The objects in the central field 2w=5.1°could be imaged with high resolution so that the objects could be recognized.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.