The rapid detection of cancer cells is crucial for clinical diagnosis in biomedical field. The traditional flow cytometry (FC) in visible band, a fluorescence-labelling detection, gives rise to the complicated sample preparation and the irrecoverable antibody consumption; it blocks the development toward a convenient detection platform with fast, inexpensive and non-labelling. Here, a specifically designed metamaterial based on split ring resonators (SRRs) is proposed. Such metamaterial operating in terahertz (THz) range exhibits polarization-dependent resonances, which are observed both in experiments and simulations. Additionally, the biosensing property of the metamaterial is investigated. On metamaterial surfaces, the lung cancer cells A549 are cultured. Under the irradiation of x-polarized THz waves, it is found that for the cell concentrations from 1×105 cells/ml to 5×105 cells/ml, the maximum frequency shift Δf (the frequency difference between measured sample and bare one) at 2.24 THz increases from 15 GHz to 137 GHz, respectively. Such results also imply that a larger cell concentration leads to a higher frequency shift. Subsequently, the samples are further measured at different polarization angles. The results show that for cell concentration of 5×105 cells/ml, the Δf exhibits the same value of 130 GHz when polarization angle equals 30° and 150°, and 15 GHz when polarization angle equals 60° and 120°. Our proposed metamaterial may supply a potential biosensing method for the detection of cancer cells, exhibiting a new insight toward the cancer cell biosensing with certain information of polarization response.
Real-time detection for living cells in vitro is essential for cell physiology, leading to a strong requirement of low cost and label free biosensors. At present, the terahertz plasmonic metamaterials (TPMMs) are an especially attractive application for biosensing owing to their sharp resonances respond. Compared with traditional biosensors, such as flow cytomertry, the TPMMs biosensors have many unique advantages, containing real-time monitoring, free label and high sensitivity. In this paper, we proposed a TPMMs which is designed by digging out periodically arranged regular hexagonal holes on the metal plate with the thickness of 200 nm. The samples of the TPMMs is used as a platform for detecting liver cancer cell GEP2 concentration at five levels (1 × 104, 5 × 104, 1 × 105, 3 × 105 and 5 × 105cells/ml). The results show that The THz PMMs biosensor cannot distinguish cell concentrations within the orders of magnitude between 1 × 104 and 5 × 104 cells/ml, however, it can distinguish cell concentrations within the orders of magnitude between 1 × 104 and 1 × 105 cells/ml based on the x-polarized reflection spectrum TPMMs biosensor. On the other hand, the transmission spectrum TPMMs biosensor has a significant detectability of the orders of magnitude cell concentration between 104 and 105 cells/ml. The proposed TPMMs biosensor paves a fascinating platform for have been widely applied for cell detection, biotechnology.
Two kinds of terahertz (THz) tunable absorber based on boottom-continuous graphene sheet and top-periodic grFeraphene structure were proposed and characterized. For the first absorber of continuous graphene sheet as a metal ground plate, it has two absorption peaks locating at 1.03 THz and 2.60THz under the Fermi energy of 0.8 eV. Upon varying Fermi energy of graphene layer from 0.4 eV to 1.0 eV, the two absorption peaks can be dynamically controlled and the modulation depth approached 19.7 % and 12.6%, respectively. For the second absorber of the periodic graphene structure, the two absorption peaks are shifted from 0.90 THz to 1.03 THz and 2.24 THz to 2.79 THz with increasing Fermi energy of graphene from 0.3 eV to 1.0 eV, respectively. The according modulation depth of two absorption peaks reached 16.23 % and 19.78 %. The absorption magnitude of peaks can both stay above 95% under different Fermi energy for two kinds of THz absorber. These results show that hybrid graphene metamaterial exhibited potentials to achieve high-performance tunable THz absorber, and may offer widespread applications such as biological detection and imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.