The rapid detection of cancer cells is crucial for clinical diagnosis in biomedical field. The traditional flow cytometry (FC) in visible band, a fluorescence-labelling detection, gives rise to the complicated sample preparation and the irrecoverable antibody consumption; it blocks the development toward a convenient detection platform with fast, inexpensive and non-labelling. Here, a specifically designed metamaterial based on split ring resonators (SRRs) is proposed. Such metamaterial operating in terahertz (THz) range exhibits polarization-dependent resonances, which are observed both in experiments and simulations. Additionally, the biosensing property of the metamaterial is investigated. On metamaterial surfaces, the lung cancer cells A549 are cultured. Under the irradiation of x-polarized THz waves, it is found that for the cell concentrations from 1×105 cells/ml to 5×105 cells/ml, the maximum frequency shift Δf (the frequency difference between measured sample and bare one) at 2.24 THz increases from 15 GHz to 137 GHz, respectively. Such results also imply that a larger cell concentration leads to a higher frequency shift. Subsequently, the samples are further measured at different polarization angles. The results show that for cell concentration of 5×105 cells/ml, the Δf exhibits the same value of 130 GHz when polarization angle equals 30° and 150°, and 15 GHz when polarization angle equals 60° and 120°. Our proposed metamaterial may supply a potential biosensing method for the detection of cancer cells, exhibiting a new insight toward the cancer cell biosensing with certain information of polarization response.
One kind of switchable, tri-band, terahertz linear polarizing rotator is presented in this paper, which consists of sandwiched metal chiral metamaterial structure composed of twisted electric field-coupled resonators in C4 symmetry and a VO2 film on substrate for active controlling. The polarizing rotation is switchable with the state change of VO2 from an insulator to metal. Simulated results consistently demonstrate that the switchable rotator exhibits extremely low loss, high polarization conversion ratio and optical activity at the three resonance frequencies. The influence of different geometric parameters of the chiral metamaterial structure is investigated to optimize the multiband rotating response of the polarizing rotator. This switchable terahertz metamaterial-based rotator has various potential applications in terahertz wave controlling and the terahertz functional devices.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.