We developed a region-of-interest (ROI) image reconstruction method that effectively reduces truncation artifacts in CBCT. By using U-Net-based deep learning (DL) methods, we devised a method to reduce truncation artifacts for ROI imaging. A total of 16294 image slices from 49 patient cases were used to generate projection data. The center of the projected image was cropped to a width of 150 mm. Then, the outer part of the truncation image was filled with each outermost pixel value for the initial correction. After the filtering process, the truncation area was cut off and used as input data in the DL model. Finally, inference images were reconstructed by use of the FDK algorithm. SSIM values for the test set of 14 patients were calculated as 0.541, 0.709 and 0.979 for FBP, Extension and the proposed ROI method, respectively. We have achieved promising results and believe that the proposed ROI image reconstruction method can help reduce radiation dose while preserving image quality
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.