This paper puts forward a electronic fault diagnose method focusing on large-diameter astronomical telescope’s armature winding, and ascertains if it is the resistance or inductance which is out of order. When it comes to armature winding’s electronic fault, give the angular position a step signal, and compare the outputs of five models of normal, larger-resistance, smaller-resistance, larger-inductance and smaller-inductance, so we can position the fault. Firstly, we ascertain the transfer function of the angular position to the armature voltage, to analysis the output of armature voltage when the angular position’s input is step signal. Secondly, ascertain the different armature currents’ characteristics after armature voltage pass through different armature models. Finally, basing on the characteristics, we design two strategies of resistance and inductance separately. The author use MATLAB/Simulink function to model and emulate with the hardware parameters of the 2.5m-caliber telescope, which China and France developed cooperatively for Russia. Meanwhile, the author add a white noise disturbance to the armature voltage, the result shows its feasibility under a certain sized disturbance.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.