With the development of space satellites, a large number of high-resolution remote sensing images have been produced, so the analysis and application of high-resolution remote sensing images are very important. Recently deep learning provides a new method to increase the accuracy of land-cover classification. This study aims to propose a classification framework based on convolutional neural network (CNN) to carry out remote sensing scene classification. After remote sensing images are trained by CNN, a model which can extract complex characteristic from the image for classification is created. In this paper, GaoFen-2(GF-2) satellite data is used as data sources and Jilin province of China is selected as the study area. Firstly, the preprocessed images are made into a GF-2 satellite data sets. Secondly, CaffeNet is used to train the data sets through Caffe platform and the classification result is obtained. The CNN overall accuracy is 89.88%, the Kappa coefficient is 0.8026. Compared with the traditional BP neural network classification result, it is obviously find the CNN is more suitable for remote sensing image classification.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.