A novel polarization state tracing algorithm has been proposed to visualize depth-resolved birefringent information by using the polarization sensitive optical coherence tomography (PSOCT) system. This algorithm is compatible to the widely adopted single input PSOCT system which uses only one circularly polarized incident light. We demonstrate the ability of this method to visualize depth-resolved myocardial architecture in both healthy and infarcted rodent hearts (ex vivo) and collagen structures responsible for skin tension lines at various anatomical locations on the face of a healthy human volunteer (in vivo).
Aging alterations in dermal blood vessels have been investigated using Optical Coherence Tomography Angiography (OCTA). However, classifying the vessel’s type was previously limited. In this study, we focused on diameter-dependent vascular alterations in facial skin with age, developing 3D analytical methods to the OCTA data with removing tail-artifact. As a result, it was found that the number of micro-vessels, defined at 20–39 microns, decreased with age, which was inversely true for thick vessels (160–179 micron diameter). Our results suggest that the aging degree of dermal vessels may be uniquely assessed by the diameter-dependent vascular alterations using the OCTA.
Significance: Cerebral blood flow (CBF) regulation at neurovascular coupling (NVC) plays an important role in normal brain functioning to support oxygen delivery to activating neurons. Therefore, studying the mechanisms of CBF adjustment is crucial for the improved understanding of brain activity.
Aim: We investigated the temporal profile of hemodynamic signal change in mouse cortex caused by neural activation and its variation over cortical depth.
Approach: Following the cranial window surgery, intrinsic optical signal imaging (IOSI) was used to spatially locate the activated region in mouse cortex during whisker stimulation. Optical microangiography (OMAG), the functional extension of optical coherence tomography, was applied to image the activated and control regions identified by IOSI. Temporal profiles of hemodynamic response signals obtained by IOSI and OMAG were compared, and OMAG signal was analyzed over cortical layers.
Results: Our results showed that the hemodynamic response to neural activity revealed by blood flow change signal signal through IOSI is slower than that observed by OMAG signal. OMAG also indicated the laminar variation of the response over cortical depth, showing the largest response in cortical layer IV.
Conclusions: Overall, we demonstrated the development and application of dual-modality imaging system composed of IOSI and OMAG, which may have potential to enable the future investigations of depth-resolved CBF and to provide the insights of hemodynamic events associated with the NVC.
The cerebral vascular system serves constant demand of neuronal activities in the brain. Neural activations are typically followed by immediate rise in local blood flow through neural-vascular coupling. Temporal dynamics and spatial redistribution of this hyperemia within the capillary bed play a deterministic role in oxygen diffusing capacity, however, the functional behavior of which remains poorly understood. Taking the advantages of the high spatiotemporal resolution of OCT velocimetry designed upon eigen-decomposition (ED) statistical analysis, we investigated the intrinsic capillary red blood cell (RBC) fluctuations within mouse cerebral cortex, representing as bandwidths of the RBC flow frequencies. The temporal hemodynamics before (rest) and during (activation) a bout of hindpaw electrical stimulations are accordingly analyzed to resolve alterations in capillary flow disturbance and its spatial distribution. In our experiment, the electrical stimulation provokes a temporal RBC fluctuation increase (rest: 16715 m/s; activation: 20516 m/s; P < 0.05) in the capillary bed located in hindpaw somatosensory cortex (HSC), as compared to the control (rest: 17020 m/s; activation: 16918 m/s; P > 0.05) ; accompanied with an increase in capillary RBC velocity (rest: 49640 m/s; activation: 61349 m/s; P < 0.05) in HSC, as compared to the control (rest: 54462 m/s; activation: 55868 m/s; P > 0.05). In addition, no significant difference was observed for the capillary vessel density in either HSC (rest: 0.390.02 m/s; activation: 0.370.01 m/s; P > 0.05) or control (rest: 0.360.02 m/s; activation: 0.370.02 m/s; P > 0.05). We conclude that neural activation evokes spatiotemporal redistribution of capillary hemodynamics regulated through instantaneous increments in flow disturbance and flow velocity, but involves no recruitment of reserved capillaries (no RBC transit path variation). Our demonstration shows the potential of OCT angiography for functional investigation and modeling of spatiotemporally coupled hemodynamics to neural activities.
Normal aging is associated with various metabolic and vascular changes. In the brain, the aging leads to an impairment of vessel structure and function. Characterizing the cerebrovascular pathologies with age is of importance to elucidate the underlying mechanism of cognitive decline correlated with blood perfusion. Here, we examine the effect of aging on cerebral microcirculation up to a capillary flow scale. This study uses optical coherence tomography angiography (OCTA) to measure vessel tortuosity, red blood cell (RBC) speed in individual capillaries and capillary density in the sensory-motor cortex of 8 young (3-month-old) and 8 aged (16-month-old) mice under isoflurane anesthesia. The result shows that the surface arterial vessels are more tortuous and the capillary RBC speed is much higher in aged animals old compared with young ones. However, the capillary vessel density is significantly lowered in the aged group than the young group.
Penetrating vessels bridge the mesh of communicating vessels on the surface of cortex with the subsurface microvascular bed that feeds the underlying neural tissue. The degeneration and dysfunction of penetrating vessels directly relates to Alzheimer’s disease, perceptual deficit, amnestic syndrome and stroke. Here we propose a cerebral penetrating vessel mapping approach based on eigen decompensation (ED) principle component analysis that is innovatively redesigned from optical coherence tomography (OCT) angiography. Ensemble complex OCT signals acquired through repeated A-scans first form a covariance matrix and then project into an eigenspace to represent frequency components of moving particles. The eigen representation of signals possesses several advantages over that in spatiotemporal domain: 1) the eigen components possess distinct statistical distributions for penetrating vessels, surface communicating vessels, vessel free regions, and territories occupied by enriched capillaries; 2) this approach is immune to tailing artifacts, enabling automatic decoupling of penetrating vessels from lateral vasculature networks. To describe the uniqueness of penetrating vessels as 2D parameter mapping, a second round of eigen analysis is applied to the eigen representations by taking each eigen component as an observation and distributions of the eigen components as features. In our datasets of mouse cerebral cortex, the eigen components mainly follow a subtle logistic distribution, statistically more significant than other features in terms of distribution spectral power (> 30 dB). While, the existence of vessel penetrating behavior locally breaks this distribution, assigning low transform probabilities to corresponding A-scans. Therefore, the transform coefficients inversely correlate to the vessel penetration and fully reveal the spatial morphology of penetrating vessels from projection view. This method allows for automatic statistical quantification of penetrating arterioles and ascending venules from large volume OCT angiography data, and accordingly contributes to the morphometric analysis of cortical microvasculature in functioning brains.
Challenge persists in the field of optical coherence tomography (OCT) when it is required to quantify capillary blood flow within tissue beds in vivo. We propose a useful approach to statistically estimate the mean capillary flow velocity using a model-based statistical method of eigendecomposition (ED) analysis of the complex OCT signals obtained with the OCT angiography (OCTA) scanning protocol. ED-based analysis is achieved by the covariance matrix of the ensemble complex OCT signals, upon which the eigenvalues and eigenvectors that represent the subsets of the signal makeup are calculated. From this analysis, the signals due to moving particles can be isolated by employing an adaptive regression filter to remove the eigencomponents that represent static tissue signals. The mean frequency (MF) of moving particles can be estimated by the first lag-one autocorrelation of the corresponding eigenvectors. Three important parameters are introduced, including the blood flow signal power representing the presence of blood flow (i.e., OCTA signals), the MF indicating the mean velocity of blood flow, and the frequency bandwidth describing the temporal flow heterogeneity within a scanned tissue volume. The proposed approach is tested using scattering phantoms, in which microfluidic channels are used to simulate the functional capillary vessels that are perfused with the scattering intralipid solution. The results indicate a linear relationship between the MF and mean flow velocity. In vivo animal experiments are also conducted by imaging mouse brain with distal middle cerebral artery ligation to test the capability of the method to image the changes in capillary flows in response to an ischemic insult, demonstrating the practical usefulness of the proposed method for providing important quantifiable information about capillary tissue beds in the investigations of neurological conditions in vivo.
The adaptive growth of collateral vessels, termed “arteriogenesis”, is crucial for maintaining regional blood supply during arterial obstruction and offsetting the adverse effect of tissue ischemia. Stimulation of arteriogenesis has been applied for the treatment of occlusive vascular diseases, and in vivo imaging of the progressive development of collateral vessel will facilitate a better understanding of the mechanism. We present using high-resolution OCT-based microangiography (OMAG) to image arteriogenesis process longitudinally in mouse cerebral cortex after middle cerebral artery occlusion (MCAO). We imaged the collateral arterioles at the arteriolo-arteriolar anastomosis (AAA) within 7-day period after MCAO to reveal key elements of collateral vessel remodeling, including alteration in vessel morphology, velocity and directionality of blood flow. The magnitudes of changes in these parameters matched the time course of the active building of collateral vessels stated in previous studies using histology. Hence, OMAG is a promising imaging tool for non-invasive longitudinal study of functional collateral vessel growth in small animal models and can be potentially applied in the experimental study of arteriogenesis stimulation.
We report a novel use of optical coherence tomography (OCT) based angiography to visualize and quantify dynamic response of cerebral capillary flow pattern in mice upon hindpaw electrical stimulation through the measurement of the capillary transit-time heterogeneity (CTH) and capillary mean transit time (MTT) in a wide dynamic range of a great number of vessels in vivo. The OCT system was developed to have a central wavelength of 1310 nm, a spatial resolution of ~8 µm and a system dynamic range of ~105 dB at an imaging rate of 92 kHz. The mapping of dynamic cerebral microcirculations was enabled by optical microangiography protocol. From the imaging results, the spatial homogenization of capillary velocity (decreased CTH) was observed in the region of interest (ROI) corresponding to the stimulation, along with an increase in the MTT in the ROI to maintain sufficient oxygen exchange within the brain tissue during functional activation. We validated the oxygen consumption due to an increase of the MTT through demonstrating an increase in the deoxygenated hemoglobin (HbR) during the stimulation by the use of laser speckle contrast imaging.
Cerebral penetrating arterioles (PAs) are structurally and functionally different from the pial arterioles, as they are an exception group from the collateral circulation. Previous study has demonstrated the PAs are the bottlenecks to the flow from the surface arteries to the deeper microcirculations. However, functional change in PAs after ischemia plays an important role in delivering blood from a highly collateralized pial arteriole network to capillaries. An ability to separately monitor PA flow dynamics is critical to understand flow redistribution mechanism during stroke and refine stroke treatment target. We use optical coherence tomography (OCT)-based microangiography (OMAG) to evaluate flow and velocity change in multiple PAs after middle cerebral artery occlusion (MCAO) in mice across a large cortex region, covering distal branches of arterioles and anastomosis. We also apply OCT-based tissue injury mapping (TIM) method to reveal the potential penumbra development within the imaging region, upon which we observed apparent differences of the PA flow dynamics between core and penumbra regions. Our results suggest that the flow dynamics of PAs can be an important factor regulating the stroke penumbra development, and that stimulatory treatment targeting PAs can be studied under the guidance of OMAG.
Tissue injury mapping (TIM) is developed by using a non-invasive in vivo optical coherence tomography to generate
optical attenuation coefficient and microvascular map of the injured tissue. Using TIM, the infarct region development in
mouse cerebral cortex during stroke is visualized. Moreover, we demonstrate the in vivo human facial skin structure and
microvasculature during an acne lesion development. The results indicate that TIM may help in the study and the
treatment of various diseases by providing high resolution images of tissue structural and microvascular changes.
Changes in blood perfusion in highly interconnected pial arterioles provide important insights about the vascular response to ischemia within brain. The functional role of arteriolo-arteriolar anastomosis (AAA) in regulating blood perfusion through penetrating arterioles is yet to be discovered. We apply a label-free optical microangiography (OMAG) technique to evaluate the changes in vessel lumen diameter and red blood cell velocity among a large number of pial and penetrating arterioles within AAA abundant region overlaying the penumbra in the parietal cortex after a middle cerebral artery occlusion (MCAO). In comparison with two-photon microscopy, the OMAG technique makes it possible to image a large number of vessels in a short period of time without administering exogenous contrast agents during a time-constrained MCAO experiment. We compare vasodynamics in penetrating arterioles at various locations. The results show that the MCA connected penetrating arterioles close to a strong AAA dilate, while those belonging to a region away from AAAs constrict in various degrees. These results suggest AAAs play a major role in supporting the active dilation of the penetrating arterioles, thus compensating a significant amount of blood to the ischemic region, whereas the poor blood perfusion occurs at the regions away from AAA connections, leading to ischemia.
Arteriolo-arteriolar anastomosis’s role in regulating blood perfusion through penetrating arterioles during stroke is yet to be discovered. We apply ultra-high sensitive optical microangiography (UHS-OMAG) and Doppler optical microangiography (DOMAG) techniques to evaluate vessel diameter and red blood cell velocity changes in large number of pial and penetrating arterioles in relation with arteriolo-arteriolar anastomosis (AAA) during and after focal stroke. Thanks to the high sensitivity of UHS-OMAG, we were able to image pial microvasculature up to capillary level through a cranial window (9 mm2), and DOMAG provided clear image of penetrating arterioles up to 500μm depth. Results showed that penetrating arterioles close to a strong AAA connection dilate whereas penetrating arterioles constrict significantly in weaker AAA regions. These results suggest that AAA plays a major role in active regulation of the pial arterioles, and weaker AAA connections lead to poor blood perfusion to penumbra through penetrating arterioles.
Acne is a common skin disease in society and often leads to scarring. In this paper, we demonstrate the capabilities of swept-source optical coherence tomography (SS-OCT) in detecting specific features of acne lesion initiation and scarring on human facial skin in vivo over 30 days. Optical microangiography (OMAG) technique made it possible to image 3D tissue microvasculature changes up to 1 mm depth in vivo without the need of exogenous contrast agents in ~10 seconds. The presented results show promise to facilitate clinical trials of treatment and prognosis of acne vulgaris by detecting cutaneous microvasculature and structural changes within human skin in vivo.
Optical microangiography (OMAG) has been extensively utilized to study three-dimensional tissue vasculature in vivo. However, with the limited image resolution (∼10 μm) of the commonly used systems, some concerns were raised: (1) whether OMAG is capable of providing the imaging of capillary vessels that are of an average diameter of ∼6 μm; (2) if yes, whether OMAG can provide meaningful quantification of vascular density within the scanned tissue volume. Multiphoton microscopy (MPM) is capable of depth-resolved high-resolution (∼1 μm) imaging of biological tissue structures. With externally labeled plasma, the vascular network including single capillaries can be well visualized. We compare the vascular images of in vivo mouse brain acquired by both OMAG and MPM systems. We found that within the penetration depth range of the MPM system, OMAG is able to accurately visualize blood vessels including capillaries. Although the resolution of OMAG may not be able to 100% resolve two closely packed tiny capillaries in tissue, it is still capable of visualizing most of the capillaries because there are interstitial tissue spaces between them. We believe our validation results reinforce the application of OMAG in microvasculature-related studies.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.