This will count as one of your downloads.
You will have access to both the presentation and article (if available).
For the present study, we investigated reliability, proton radiation effects, and the root causes of COBD processes in MOCVD-grown broad-area InGaAs-AlGaAs strained QW lasers using various failure mode analysis (FMA) techniques. Two different approaches, accelerated life-testing and proton irradiation, were taken to generate lasers at different stages of degradation. Our objectives were to (i) study the effects of point defects introduced during crystal growth and those induced by proton irradiation with different energies and fluences in the lasers on degradation processes and to (ii) compare trap characteristics and carrier dynamics in pre- and post-stressed lasers with those in pre- and post-proton irradiated lasers. During entire accelerated life-tests, time resolved electroluminescence (TREL) techniques were employed to observe formation of a hot spot and subsequent formation and progression of dark spots and dark lines through windowed n-contacts.
Physics of failure investigation in high-power broad-area InGaAs-AlGaAs strained quantum well lasers
View contact details
No SPIE Account? Create one