Femtosecond laser ablation of materials with high thermal conductivity is of paramount importance, because the chemical composition and properties of the area ablated with femtosecond laser are kept unchanged. The material processing by femtosecond laser can well control the heat-affected zone, compared to nanosecond laser ablation. We report on the heat-affected zone of crystalline copper (Cu) by use of femtosecond laser experimentally and theoretically. Laser ablation of Cu is investigated theoretically by two temperature model and molecular dynamics (MD) simulation. The MD simulation takes into account of electron temperature and thermal diffusion length calculated by two temperature model. The dependence of lattice temperature on time and depth is calculated by the MD simulation and two temperature model. The heat-affected zone estimated from the temperature is mainly studied and calculated to be 3 nm at 0.02 J/cm2 which is below the threshold fluence of 0.137 J/cm2. In addition, the thickness of heat-affected zone of copper crystal ablated with femtosecond Ti:sapphire laser is experimentally studied. As a result of X-ray diffraction (XRD) of the ablated surface, the surface crystallinity is partially changed into disordered structure from crystal form. The residual energy left in the metal, which is not used for ablation, will induce liquid phase, leading to the amorphous phase of the metal during resolidification. The thickness of heat-affected zone depends on laser fluence and is experimentally measured to be less than 1 μm at higher laser fluences than the ablation threshold.
The melted area is found on the surface ablated by nanosecond and picosecond laser pulses. However, the heat effect is little on the ablated surface in the case of femtosecond laser due to non-thermal ablation process. Heat-affected zone of metallic bulk crystal ablated with femtosecond Ti:sapphire laser pulses is experimentally studied. As a result of XRD (X-ray diffraction) measurements, the XRD peak signal of the area ablated with Ti:sapphire laser becomes smaller than that of the crystalline metal sample. While the crystallinity of the metal sample is crystalline before the laser ablation, the crystallinity in the ablated area is partially changed into the amorphous form. Because the residual pulse energy that is not used for the ablation process remains, leading to the formation of thin layer of melt phase. The melt layer is abruptly cooled down not to be re-crystallized, but to transform into the amorphous form. It is evident that the area ablated with femtosecond laser is changed into the amorphous metal. Additionally XRD measurements and AR+ etching are performed alternately to measure the thickness of the amorphous layer. In the case of iron, the thickness is measured to be 1 μm approximately, therefore heat-affected zone is quite small.
Ablation of cubic-boron nitride (c-BN) and hexagonal-boron nitride (h-BN) ceramics irradiated with Ti:sapphire laser (110fs) and Nd:YAG laser (100ps) pulses is studied. The relationship between ablation rate and laser fluence for the Nd:YAG laser shows a semi-logarithmic formula for c-BN and h-BN, and also the ablation rate of h-BN by Ti:sapphire laser is observed similar to that by the Nd:YAG laser, except that of c-BN. It is found that there are two different regimes of ablation rate for c-BN as same as metals by Ti:sapphire laser ablation. In addition, it is found from XPS analysis and SEM observation that the area ablated with Ti:sapphire laser shows the BN surface unchanged and has no evidence of melting. These results are different from the ablated surface with the Nd:YAG laser. In short, the microscopic processing of BN ceramics using femtosecond Ti:sapphire laser shows little heat effect and keeps the chemical composition of the ablated surface unchanged.
The new material processing characteristic of aluminum nitride (AlN) ceramic is compared with microsecond, nanosecond and femtosecond laser ablation. The conventional laser material processing technology with longer pulsewidth laser such as TEA CO2 laser, Q-switched YAG laser, and excimer lasers leads to the thermal shock or lateral damage on target material, and those thermal effect causes the surface modification of AlN ceramic target. The comparative study of the laser ablation with microsecond TEA CO2 laser pulse, nanosecond KrF excimer laser pulse, and femtosecond Ti:sapphire laser pulse is performed in time domain. Using intense ultrashort titanium sapphire laser two-photon laser ablation of TiO2 photo-catalyst was also investigated experimentally and theoretically aiming at the enhancement of photo-catalyst reaction. The black-surfacing of the TiO2 photo- catalyst crystal was successfully achieved by drilling a large number of conical micro-holes with two-photon laser ablation. The ablated surface has a roughness of sub micrometer order, and no heat-affected zone was observed. The simple equation is developed to explain two-photon ablation process of the TiO2 photo- catalyst and the dependence of the ablation characteristic on the pulsewidth.
In this study, the new material processing characteristic of aluminum nitride (AlN) ceramic is compared with microsecond, nanosecond and femtosecond laser ablation. The conventional laser material processing technology with longer pulsewidth laser such as TEA CO2 laser, Q-switched YAG laser, and excimer lasers leads to the thermal shock or lateral damage on target material, and those thermal effect causes the surface modification of AlN ceramic target. The comparative study of the laser ablation with microsecond TEA CO2 laser pulse, nanosecond KrF excimer laser pulse, and femtosecond Ti:sapphire laser pulse is performed in time domain.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.