The GaSb quantum dots (QDs) with type II band alignment have attracted great attention recently. They are predicted to be optimizing active region materials for achieving high efficient intermediate-band solar cells and for obtaining ultra-long storage time for memory cells. In this research, GaSb QDs sandwiched inside InAlAs matrix lattice-matched to InP (001) substrate have been obtained via droplet epitaxy. The droplet epitaxy enable us to achieve low density (~2.6 x 10^9/cm^2) and large size (average height ~6.5nm) for the QDs while the lattice mismatch between the GaSb and InAlAs matrix is only ~4%. PL measurements reveal a type-II band alignment for these GaSb/InAlAs/InP QDs. The PL peak energy of QDs shows a blue-shift of >100 meV when the laser intensity increases by six orders of magnitude. Time-resolved PL measurements further confirm the type-II band alignment for the QDs by showing a maximum carrier lifetime of ~4.5 ns. The abnormal dependence of peak energy of QD PL band on the temperature in together with the special PL decay curve indicate that these GaSb/InAlAs QDs likely have different physics mechanism from common GaSb/GaAs type-II QDs. This study provide useful information for understanding the band structure and carrier dynamics of the GaSb/InAlAs QDs grown on InP surface.
The InGaAs surface quantum dots grown on GaAs surface without a capping layer (surface quantum dots, SQDs) are expected to play an important role for sensor applications due to their special surface sensitive properties. In this research, we investigated the photoluminescence (PL) characteristics of such In0.35Ga0.65As/GaAs SQDs with a layer of buried InGaAs QDs (BQDs) as reference. The uncapped InGaAs SQDs are integrated into a hybrid nanostructure with SQDs and buried quantum dots (BQDs) spaced by a 70 nm GaAs layer. Due to this thick GaAs spacer, we assert there is no quantum coupling between the SQDs and BQDs so that each layer of QDs has independent emission. The PL spectra show that the SQD PL intensity is far less than BQDs at low temperature but exceeds BQDs at high temperature, indicating a possible carrier transfer between the SQDs and surface states. With increasing excitation intensity, the PL spectra show clearly broaden on the high energy side and a blueshift for both the SQDs and BQDs. Therefore, there is lateral carrier transfer among each layer of QDs due to their high areal density. The intra-layer carrier transfer among SQDs as well as the inter-layer carrier transfer between SQDs and surface states attribute to carriers dynamics that make the SQDs having optical performance very different from the BQDs.
Atomic coherence and interference play an important role in the study of the atom-photon interactions. Electromagnetically induced transparency (EIT) is an extensively studied two-photon coherence phenomenon theoretically as well as experimentally. EIT is mainly observed in three-level atomic systems which causes transparency by quenching absorption of the medium. In this paper, based on the lambda type three-level system including energy level |1>, |2> and |3>, a microwave driving field is introduced between the excited-state energy level |3> and another excited-state energy level |4> to form an inverted Y-type four-level system. We theoretically study the two- and three-photon coherence in this system. The results show that the coupling field makes the probing absorption intensity at the resonant frequency have a very narrow line-width depression, i.e., EIT. The microwave field causes a dynamic Stark splitting of the energy level |3> and induces the Aulter-Townes double peaks. Their frequency interval is exactly equal to the Rabi frequency of the microwave field. The presence of all three fields induces wide window of EIT at the line center owing to the enhanced depression results. The transient evolution is also discussed to understand the optical switching process in the system. Our theoretical study will be helpful to get a deeper insight into the three-photon effects in multilevel systems.
Recently, to sandwich InAs QDs with GaAs1-xSbx layers have attracted enormous attention. It is expected to achieve a transition from type-I to type-II band alignment at ~ x=12%. The type-II InAs/GaAs1-xSbx QDs are predicted to be one of the optimizing active region materials for achieving high efficient intermediate-band solar cells.
We first investigate PL properties of InAs/GaAs1-xSbx QD structures of different Sb compositions (x=0, 0.15, and 0.25) in the GaAs1-xSbx capping layer. By capping the InAs QDs with GaAs0.85Sb0.15 and GaAs0.75Sb0.25 layer, we are able to gain type II QDs. These type II QDs exhibit a clear multi-peaks characteristic under increasing laser excitation intensity, which stems from different carriers recombination routes due to the combination of InAs QDs with GaAs1-xSbx capping layer. Time-resolved PL measurements further confirm our assignment for the mnulti-peaks in the PL spectra. We then study carrier coupling inside vertically aligned InAs/GaAs and InAs/GaAs1-xSbx QD pairs. The features of InAs/GaAs1-xSbx QD pairs are very different from the traditional InAs/GaAs QD-pairs. Again, clear multi-peaks characteristic are observed under stronng laser excitation intensity, which stems from different carriers recombination routes from the top InAs/GaAs1-xSbx QDs.
Our investigations indicate that the optical behavior and carrier dynamics in type-II InAs/GaAs1-xSbx QDs and QD-pairs are much more complicated than the InAs/GaAs QDs counterparts. This study provide useful information for understanding the band structure and carrier dynamics of the InAs/GaAs1-xSbx QDs for high efficiency solar cell applications.
The type-I to type-II band alignment transition in InAlAsAs/AlGaAs/GaAs self-assembled quantum dots (QDs) is investigated when the Al-composition in QDs and barrier are changed. In particular, the In0.46Al0.54As/Ga0.46Al0.54As/GaAs QDs show unique optical properties. The PL peak energy has a blue-shift of >40 meV when the laser intensity increases by four orders of magnitude, indicating a type-II band alignment of the QDs. The formation of the type-II band alignment is explained by that the quantum-confinement effect pulls up the minimum electron energy level in the QDs and the Γ→X transition in the Ga0.46Al0.54As barrier. The time-resolved PL (TRPL) spectrum of QDs at peak wavelength exhibits a double-component decay behavior, suggesting the possibility of type-I and type-II band alignment coexistence in this QD sample. The continuum state of the QDs is also investigated. Emission associated with the continuum states of the QDs is directly observed in PL spectra. The PL excitation (PLE) and TRPL spectra reveal an efficient carrier relaxation from the AlGaAs barrier into the InAlAs QD ground state via the continuum states. The carrier recombination in the continuum states can compete with that in the QDs due to the long recombination lifetime in the type-II QDs. This feature of continuum state emission can not be observed for normal InGaAs/GaAs QDs with the type-I band structure.
We study the quantum interference in three-photon resonant nondegenerate six-wave mixing (NSWM) in a five-level
system in which the middle level of six-wave mixing and other level are coupled by a strong laser field. The coupling
field-dependence of the NSWM signal intensity and the spectrum of the NSWM with a coupling field are discussed. We
find that in the presence of a strong coupling field, the three-photon resonant NSWM spectrum exhibits Autler-Townes
splitting, which reflects the levels of the dressed states. It also leads to either suppression or enhancement of the NSWM
signal.
We have observed the formation of photorefractive spatial quasi-stead-state solitons in SBN:75 crystal by electric field
with white beam as background and signal beam intensity of μW magnitude. It was found that the electric field had
obvious effect on the characteristics of laser beam propagation in crystal. It showed a performance of self-focusing that
the output beam from the crystal is proportional to the voltage of the external electric field along the c-axis of the crystal.
At the voltage of 900V(1800V/cm), (2+1) -dimensional bright spatial solitons formed. While applied voltage along the
reverse of c-axis, the diffraction of spot on the output face of the crystal appeared obviously as a performance of
self-defocusing.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.