Direct imaging instruments have the spatial resolution to resolve exoplanets from their host star. This enables direct characterization of the exoplanets atmosphere, but most direct imaging instruments do not have spectrographs with high enough resolving power for detailed atmospheric characterization. We investigate the use of a single-mode diffraction-limited integral-field unit that is compact and easy to integrate into current and future direct imaging instruments for exoplanet characterization. This achieved by making use of recent progress in photonic manufacturing to create a single-mode fiber-fed image reformatter. The fiber link is created with three-dimensional printed lenses on top of a single-mode multicore fiber that feeds an ultrafast laser inscribed photonic chip that reformats the fiber into a pseudoslit. We then couple it to a first-order spectrograph with a triple stacked volume phase holographic grating for a high efficiency over a large bandwidth. The prototype system has had a successful first-light observing run at the 4.2-m William Herschel Telescope. The measured on-sky resolving power is between 2500 and 3000, depending on the wavelength. With our observations, we show that single-mode integral-field spectroscopy is a viable option for current and future exoplanet imaging instruments.
The Multi-Core Integral-Field Unit (MCIFU) is a diffraction-limited near-infrared integral-field spectrograph designed to detect and characterise exoplanets and disks in combination with extreme adaptive optics (xAO) instruments. It has been developed by an extended consortium as an experimental path finder for medium resolution spectroscopic upgrades for xAO systems. To allow it to achieve its goals we manufactured a fibre link system composed of a custom integrated fiber, with 3D printed microlenses and an ultrafast laser inscribed reformatter. Here we detail the specific requirements of the fibre link, from its design parameters, through its manufacture the laboratory performance and discuss upgrades for the future.
The Multi-Core Integral-Field Unit (MCIFU) is a new diffraction-limited near-infrared integral-field unit for exoplanet atmosphere characterization with extreme adaptive optics (xAO) instruments. It has been developed as an experimental pathfinder for spectroscopic upgrades for SPHERE+/VLT and other xAO systems. The wavelength range covers 1.0 um to 1.6um at a resolving power around 5000 for 73 points on-sky. The MCIFU uses novel astrophotonic components to make this very compact and robust spectrograph. We performed the first successful on-sky test with CANARY at the 4.2 meter William Herschel Telescope in July 2019, where observed standard stars and several stellar binaries. An improved version of the MCIFU will be used with MagAO-X, the new extreme adaptive optics system at the 6.5 meter Magellan Clay telescope in Chile. We will show and discuss the first-light performance and operations of the MCIFU at CANARY and discuss the integration of the MCIFU with MagAO-X.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.