The vortex light containing orbital angular momentum (OAM) has important application prospects in precision measurement, micro particle manipulation and basic physics. Because the Poynting vector of the vortex wave is not in line with the direction of the optical axis, more information is contained in the echo than the ordinary electromagnetic wave, so it has a unique advantage in the detection of unknown object. The wave propagation characteristics of the vortex beam are modeled and analyzed. Based on the Michelson interference principle, a new type of vortex light interference scheme is designed. The measurement scheme of the wavelength of the vortex light is proposed and the experimental verification is carried out. On this basis, a new method for detecting non-cooperative targets in space is proposed and analyzed theoretically. It provides a new way for measuring angular velocity of objects by vortex optics, and lays a good foundation for remote sensing of non-cooperative targets in actual demand in the future.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.