Super-resolution optical fluctuation imaging (SOFI) is a fast and low-cost live-cell optical nanoscopy for extracting subdiffraction information from the statistics of fluorescence intensity fluctuation. As SOFI is based on the fluctuation statistics, rather than the detection of single molecules, it poses unique requirements for imaging detectors, which still lack a systematic evaluation. Here, we analyze the influences of pixel sizes, frame rates, noise levels, and different gains in SOFI with simulations and experimental tests. Our analysis shows that the smaller pixel size and faster readout speed of scientific-grade complementary metal oxide semiconductor (sCMOS) enables SOFI to achieve high spatiotemporal resolution with a large field-of-view, which is especially beneficial for live-cell super-resolution imaging. Overall, as the performance of SOFI is relatively insensitive to the signal-to-noise ratio (SNR), the gain in pixel size and readout speed exceeds the loss in SNR, indicating sCMOS is superior to electron multiplying charge coupled device in context to SOFI in many cases. Super-resolution imaging of cellular microtubule structures with high-order SOFI is experimentally demonstrated at large field-of-view, taking advantage of the large pixel number and fast frame rate of sCMOS cameras.
Because of its optical property of photostability, Nitrogen-Vacancy center (NV center) is desired to be applied for biomedical staining for super-resolution microscopy. In this paper, we report the sub-diffraction imaging of NV centers in nano-diamond and bulk materials. The resolution of ~65nm is achieved in the FND sample with our home built CW STED system.
Fluorescent microscopy has become an essential tool to study biological molecules, pathways and events in living cells, tissues and animals. Meanwhile even the most advanced confocal microscopy can only yield optical resolution approaching Abbe diffraction limit of ~200 nm. This is still larger than many subcellular structures, which are too small to be resolved in detail. These limitations have driven the development of super-resolution optical imaging methodologies over the past decade.
In stimulated emission depletion (STED) microscopy, the excitation focus is overlapped by an intense doughnut-shaped spot to instantly de-excite markers from their fluorescent state to the ground state by stimulated emission. This effectively eliminates the periphery of the Point Spread Function (PSF), resulting in a narrower focal region, or super-resolution. Scanning a sharpened spot through the specimen renders images with sub-diffraction resolution. Multi-color STED imaging can present important structural and functional information for protein-protein interaction.
In this work, we presented a two-color, synchronization-free STED microscopy with a Ti:Sapphire oscillator. The excitation wavelengths were 532nm and 635nm, respectively. With pump power of 4.6 W and sample irradiance of 310 mW, we achieved super-resolution as high as 71 nm. Human respiratory syncytial virus (hRSV) proteins were imaged with our two-color CW STED for co-localization analysis.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.