The true structure of alternating conjugated polymers – the state-of-the-art materials for a number of organic electronics technologies – often deviates from the idealized picture but this gets relatively limited attention. Here, we quantify the amount of homocoupling defects resulting from Stille polymerization and shed new light on the actual distribution of these structural defects in a prototype polymer material. Further, when compared to a homocoupling-free variant, these defects hinder fullerene intercalation, with a clear implication on charge-transfer absorption. This demonstrates that molecular defects may (strongly) impact polymer and blend properties and calls for increased attention for defect-free materials.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.