This paper discusses revolutionary laser system architecture capable of dramatically reducing the complexity of laser systems while increasing capability. The architecture includes 3 major subsystems. The first is a phased array of laser sources. The second provides wavefront control and electronic beam steering. The third is sub-aperture receiver technology. Combining these three technologies into a new laser systems architecture results in a system that has graceful degradation, can steer to as wide an angle as individual optical phased array sub-apertures can steer, and can be scaled to high power and large apertures through phasing of a number of sub-apertures.
An analysis of intensity filamentation in a broad area semiconductor laser having an optical cavity with an angled grating has been performed, using both an analytical six-wave mixing theory and beam propagation method (BPM) simulations. With the grating at the Bragg diffraction angle, the analytical theory shows that the use of the grating gives rise to lateral optical anisotropy, which suppresses filamentation of the laser radiation. For a given semiconductor laser design and operating condition, the predictions of the analytical theory are compared with those from a beam propagation method simulation. 12
This paper presents an overview of a cooperative research and development program between Ball Aerospace and Technologies Corp. and the Air Force Phillips Laboratory for laser communications. This effort employs hardware and equipment originally developed to support the crosslinking between geostationary Defense Support Program surveillance satellites. This joint activity modifies the existing hardware for ground based demonstrations and simulations focuses at risk reduction for future applications and technology insertion into operational architectures meeting future commercial, civil, and DOD communications requirements. The ultimate goal of the program is to produce hardware for a near term flight demonstration. A brief overview of the capabilities of the existing hardware will be presented followed by a status of the development efforts and future plans.
Proceedings Volume Editor (11)
This will count as one of your downloads.
You will have access to both the presentation and article (if available).
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.