KEYWORDS: Sensors, Signal to noise ratio, Monte Carlo methods, Calibration, Computer simulations, Interference (communication), Signal attenuation, Reconstruction algorithms, Matrices, Spatial resolution
A direction of arrival (DOA) estimation algorithm for coherent signals in the presence of unknown mutual coupling is proposed. A group of auxiliary sensors in a uniform linear array are applied to eliminate the effects on the orthogonality of subspaces brought by mutual coupling. Then, a Toeplitz matrix, whose rank is independent of the coherency between impinging signals, is reconstructed to eliminate the rank loss of the spatial covariance matrix. Therefore, the signal and noise subspaces can be estimated properly. This method can estimate the DOAs of coherent signals under unknown mutual coupling accurately without any iteration and calibration sources. It has a low computational burden and high accuracy. Simulation results demonstrate the effectiveness of the algorithm.
In this paper, we present a new direction of arrival (DOA) estimation algorithm for coherent wideband signals. This algorithm is based on the test of orthogonality of projected subspaces (TOPS) method which will fail to work in real environments where signals are highly correlated or coherent due to multipath propagation. In order to overcome the disadvantage, we combine spatial smoothing techniques with TOPS method so that the rank of covariance matrix is equal to the number of signal sources even signals received are coherent. Unlike other coherent wideband methods, such as the coherent signal subspace method (CSSM) and WAVES, the new method does not require any initial DOA estimation, thus avoiding errors brought by incorrect initial values. Simulations on computer and experiments in the anechoic chamber based on an 8-elements digital array radar test-bed operating at L & S band are carried out. Simulation and experimental results validate the effectiveness of proposed algorithm.
Amplitude-phase errors and mutual coupling errors among multi-channels in digital array radar (DAR) will seriously deteriorate the performance of signal processing such as digital beam-forming (DBF) and high resolution direction finding. In this paper, a combined algorithm for error calibration in DAR has been demonstrated. The algorithm firstly estimates the amplitude-phase errors of each channel using interior calibration sources with the help of the calibration network. Then the signals from far field are received and the amplitude-phase errors are compensated. According to the subspace theories, the relationship between the principle eigenvectors and distorted steering vectors is expressed, and the cost function containing the mutual coupling matrix (MCM) and incident directions is established. Making use of the properties of MCM of uniform linear array, Gauss-Newton method is implied to iteratively compute the MCM and the direction of arrival (DOA). Simulation results have shown the effectiveness and performance of proposed algorithm. Based on an 8-elements DAR test-bed, experiments are carried out in anechoic chamber. The results illustrate that the algorithm is feasible in actual systems.
The polarimetric active radar calibrator (PARC) is extensively used as an external test target for system distortion compensation and polarimetric calibration for the high-resolution polarimetric radar. However, the signal undergoes distortion in the PARC, affecting the effectiveness of the compensation and the calibration. The system distortion compensation resulting from the distortion of the amplitude and phase in the PARC was analyzed based on the “method of paired echoes.” Then the correction method was proposed, which separated the ideal signals from the distorted signals. Experiments were carried on real radar data, and the experimental results were in good agreement with the theoretical analysis. After the correction, the PARC can be better used as an external test target for the system distortion compensation.
In this paper, an X-band, 8-element wideband digital array radar (DAR) test-bed is presented, which makes use of a
novel digital backend coupled with highly-integrated, multi-channel intermediate frequency (IF) digital receiver. Radar
returns are received by the broadband antenna and then down-converted to the IF of 0.6GHz-3.0GHz. Four band-pass
filters are applied in the front-end to divide the IF returns into four frequency bands with the instantaneous bandwidth of
500MHz. Every four array elements utilize a digital receiver, which is focused in this paper. The digital receivers are
designed in a compact and flexible manner to meet the demands of DAR system. Each receiver consists of a fourchannel
ADC, a high-performance FPGA, four DDR3 chips and two optical transceivers. With the sampling rate of up to
1.2GHz each channel, the ADC is capable of directly sampling the IF returns of four array elements at 10bits. In addition
to serving as FIFO and controller, the onboard FPGA is also utilized for the implementation of various real-time
algorithms such as DDC and channel calibration. Data is converted to bit stream and transferred through two low
overhead, high data rate and multi-channel optical transceivers. Key technologies such as channel calibration and
wideband DOA are studied with the measured data which is obtained in the experiments to illustrate the functionality of
the system.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.