Wei Qian, Dazeng Feng, Hong Liang, Joe Zhou, Yong Liu, Shirong Liao, Cheng-Chih Kung, Joan Fong, B. Jonathan Luff, Roshanak Shafiiha, Daniel Lee, Wayne White, Mehdi Asghari
We report a novel, compact design of high speed Ge photo detector integrated with an echelle demultiplexer on a large
cross-section SOI platform with low insertion loss and low fiber coupling loss. A narrow Ge photo detector waveguide is
directly butt-coupled to a Si waveguide to ensure low loss and high speed operation. With a Ge detector size of only
0.8×15 μm2, the device achieves greater than 30 GHz modulation speed. The results indicate that the device speed is
transit time limited and that the detector performance benefits from the high electron and hole drift velocity of
germanium. The dark current of the detector is less than 0.5μA at -1V. This small footprint high speed Si-based WDM
receiver can be fabricated using CMOS processes and used for multichannel terabit data transmission with low
manufacturing cost.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.