Significance: The method of photobiomodulation (PBM) has been used in medicine for a long time to promote anti-inflammation and pain-resolving processes in different organs and tissues. PBM triggers numerous cellular pathways including stimulation of the mitochondrial respiratory chain, alteration of the cytoskeleton, cell death prevention, increasing proliferative activity, and directing cell differentiation. The most effective wavelengths for PBM are found within the optical window (750 to 1100 nm), in which light can permeate tissues and other water-containing structures to depths of up to a few cm. PBM already finds its applications in the developing fields of tissue engineering and regenerative medicine. However, the diversity of three-dimensional (3D) systems, irradiation sources, and protocols intricate the PBM applications.Aim: We aim to discuss the PBM and 3D tissue engineered constructs to define the fields of interest for PBM applications in tissue engineering.Approach: First, we provide a brief overview of PBM and the timeline of its development. Then, we discuss the optical properties of 3D cultivation systems and important points of light dosimetry. Finally, we analyze the cellular pathways induced by PBM and outcomes observed in various 3D tissue-engineered constructs: hydrogels, scaffolds, spheroids, cell sheets, bioprinted structures, and organoids.Results: Our summarized results demonstrate the great potential of PBM in the stimulation of the cell survival and viability in 3D conditions. The strategies to achieve different cell physiology states with particular PBM parameters are outlined.Conclusions: PBM has already proved itself as a convenient and effective tool to prevent drastic cellular events in the stress conditions. Because of the poor viability of cells in scaffolds and the convenience of PBM devices, 3D tissue engineering is a perspective field for PBM applications.
For many years, photobiomodulation in cancer patients has been used empirically, based on the positive clinical experience. When using PBM for the prevention and treatment of early radiation toxicity, exposure can occur directly in the area of the tumor site. For that reason, the data is need about a potential influence of low-intensity red light as on the normal as well on the tumor cells exposed to ionizing radiation. The aim of the work was to study the effects of photobiomodulation (PBM) in the red spectrum (640 nm) with fluences from 3 mJ/cm2 to 2 J/cm2 in combination with ionizing radiation at doses of 2–6 Gy against human BJ-5ta-hTERT cells – postnatal fibroblasts. The cells were exposed to low-intensity red light before or after their exposure to IR, the viability of the cells was determined by MTT-test 24 hours after the last exposure. The effects of PBM depend on the fluence of PBM, the dose of IR and the sequence of the actions of these physical factors on cells. The adaptive effect of PBM was observed only for high fluences – 1 and 2 J/cm2 when exposed to PBM and subsequent irradiation of IR. At the same time, the stimulating effect of PBM was observed only for low fluences from 3 to 300 mJ/cm2 under IR irradiation and subsequent (after 1 hour) exposure to PBM. These data should be taken into account when using PBM for the correction of adverse events of radiation therapy in a clinic.
The aim of this study was to compare the effectiveness of low-intensity LED radiation of the red and infrared spectra for the correction of mucositis in patients receiving radiation and chemoradiation therapy for oral and pharyngeal cancer at an energy density of less than 1 J/cm2. The study included 106 patients who received radiation and chemoradiation therapy for oral cavity and pharyngeal cancer, who were randomly divided into three groups. In the first (37 patients) correction of mucositis was carried out in accordance with the clinic's standards, in the second (36 patients) and the third (33 patients), patients additionally received exposure to the oral cavity with low-intensity LED radiation at a wavelength of 635 nm at a dose of 0,3 J/cm2 (prophylactic regimen) and 0.45 J/cm2 (treatment regimen). When exposed to a wavelength of 780 nm, the dose was 0.6 J/cm2 with a prophylactic regime and 0.8 J/cm2 with a therapeutic regimen, respectively. Exposure to low-level LED irradiation at a wavelength of 635 nm significantly reduced the frequency and severity of radiation mucositis, increased the time until the onset of its first symptoms, reduced the duration of severe mucositis (grade 3) and reduced the patients' need for painkillers, including narcotic analgesics compared with the group receiving standard prophylaxis and correction of mucositis. Photobiomodulation at a wavelength of 780 nm, compared with the standard correction group, significantly increased the time to the onset of the first symptoms of mucositis and decreased the severity of pain.
The aim of the work was studying the effects of photobiomodulation in doses of less than 1 J/cm2 in combination with gamma-irradiation to Hela Kyoto cells. Tumor cells were irradiated with 640 nm LED at different energy densities before and after to gamma-irradiation. Cells viability was determined 24 h after exposure for each gamma-irradiation dose and PBM mode. There was a statistically significant decrease in a number of viable tumor cells for samples that were exposed to PBM prior to gamma-irradiation and a statistically significant increase in a number of viable tumor cells for samples that were exposed to PBM after gamma-irradiation.
Significance: Currently, various scaffolds with immobilized cells are widely used in tissue engineering and regenerative medicine. However, the physiological activity and cell viability in such constructs might be impaired due to a lack of oxygen and nutrients. Photobiomodulation (PBM) is a promising method of preconditioning cells to increase their metabolic activity and to activate proliferation or differentiation.
Aim: Investigation of the potential of PBM for stimulation of cell activities in hydrogels.
Approach: Mesenchymal stromal cells (MSCs) isolated from human gingival mucosa were encapsulated in modified fibrin hydrogels with different thicknesses and concentrations. Constructs with cells were subjected to a single-time exposure to red (630 nm) and near-infrared (IR) (840 nm) low-intensity irradiation. After 3 days of cultivation, the viability and physiological activity of the cells were analyzed using confocal microscopy and a set of classical tests for cytotoxicity.
Results: The cell viability in fibrin hydrogels depended both on the thickness of the hydrogels and the concentration of gel-forming proteins. The PBM was able to improve cell viability in hydrogels. The most pronounced effect was achieved with near-IR irradiation at the 840-nm wavelength.
Conclusions: PBM using near-IR light can be applied for stimulation of MSCs metabolism and proliferation in hydrogel-based constructs with thicknesses up to 3 mm.
Photobiomodulation (PBM) using nonionizing light sources, including lasers, light-emitting diodes, and/or broadband light, in the visible (400 to 700 nm) and near-infrared (700 to 1100 nm) electromagnetic spectrum, has been successfully exploited for multiple therapeutic purposes. We analyzed the effects of red and infrared irradiation on neuroblastoma cells in an in vitro rotenone model of Parkinson’s disease. Cell viability was assessed by colorimetric assay for metabolic activity (MTT test), and the oxygen consumption rate was analyzed using a Seahorse analyzer. Low doses of rotenone slightly, but not significantly, suppressed oxygen consumption and did not affect cell viability within 2 hours of treatment. PBM stimulated mitochondrial respiration overcoming rotenone-induced inhibition. At high doses (50 μM), rotenone moderately suppressed cell viability, which was reversed by PBM. Thus, preliminary treatment with red and infrared radiation improves cell viability and enhances mitochondrial oxygen consumption in an in vitro rotenone model of Parkinson’s disease.
Mesenchymal stem cells (MSCs) represent a significant interest for cell therapy applications and, being primary cells, undergo gradual aging in culture. We studied the effects of low-intensity infrared laser irradiation during aging of MSCs in culture. Both young and aged MSCs respond to low irradiation doses (0.17 J / cm2) by growth activation and to middle doses (2.1 J / cm2) by growth retardation. Aged cells demonstrate a relatively higher growth response to low doses, but they are significantly more susceptible to deleterious effects of middle doses compared to young cells. Studies of MSC aging during long-term culture under hypoxia conditions demonstrate that low-dose irradiation of MSCs every 2 days in culture substantially increases the number of population doublings, compared to the control group. In addition, irradiated cells persisted in culture for two passages (4 days) longer than their control counterparts. However, irradiated cells did not proliferate more rapidly if irradiation was omitted. We conclude that growth responses of young and aged murine MSCs to infrared laser irradiation differ significantly and that regular irradiation affects MSC aging in culture but does not result in a bonafide retardation of aging process.
Light field intensity distribution in three-dimensional polylactide scaffolds after irradiation with low-intensity light from one side of the samples has been determined in the visible and near-infrared regions of the spectrum. Two different types of scaffolds manufactured by the methods of supercritical fluid foaming and surface selective laser sintering have been investigated. The problem is solved by numerical calculation according to the Monte Carlo method involving experimentally obtained information about effective optical parameters of the scaffold material. Information about intensity distribution of the incident light in the matrix volume is needed to assess the radiation level for the scaffold cells after photobiostimulation. It has been shown that the formation of the light field in case of strongly scattering media, such as polylactide scaffolds, is determined by anisotropy g and the scattering coefficient μs.
The bleaching of polyacrylamide tattooed skin-mimicking phantoms by a series of laser pulses in a single session is studied. It is shown that compared to the single-pulse procedures tattoo removal by series of laser pulses allows not only for reducing the necessary laser fluence, but also for improving the degree of bleaching. The dynamics of formation and dissolution of microscopic gas bubbles in tattooed skin phantoms exposed to laser radiation is also studied. A laser-induced tattoo bleaching mechanism is suggested, based on the process of selective photo-thermolysis of pigmented particles in conditions where the thermal conductivity of the medium surrounding the particles is decreased because of the microbubbles formed therein.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.