Through the choice of appropriate layer thicknesses, the bandgap of InAs/Ga(As)Sb type II superlattices (T2SLs) can be engineered in a wide range covering the mid-wavelength and long-wavelength infrared (MWIR, 3 μm - 5 μm and LWIR, 8 μm - 12 μm) spectral regions. Using this material system, Fraunhofer IAF develops bi-spectral MWIR image sensors based on homojunction photodiodes for missile warning applications and pursues modern heterojunction approaches as well as heteroepitaxial growth of T2SLs on GaAs. We discuss topics arising from efforts to improve the manufacturability of our bi-spectral arrays and report on the progress of the integration with MWIR heterojunction designs that exhibit reduced dark currents.
Photodetectors in the non-visible region of the electromagnetic spectrum are essential for security, defense and space science as well as industrial and scientific applications. The research activities at Fraunhofer IAF cover a broad range in the infrared (IR) regime. Whereas short-wavelength IR (SWIR, <1.7 μm) detectors are realized by InGaAs/InP structures, InAs/GaSb type-II superlattice (T2SL) infrared detectors are developed for the spectral bands from mid- (MWIR, 3-5 μm) to long-wavelength IR (LWIR, 8-12 μm). We report on the extension of the superlattice empirical pseudopotential method (SEPM) to 300 K for the design of LWIR heterostructures for operation near room temperature. Recently, we have also adapted heterostructure concepts to our well established bi-spectral T2SL MWIR detector resulting in a dark current density below 2 × 10-9 A/cm2 for a cut-off wavelength close to 5 μm. Finally, we present first results obtained with a gated viewing system based on our InGaAs/InAlAs/InP avalanche photodiode arrays.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.