Digital and mobile imaging camera system performance is determined by a combination of sensor characteristics, lens characteristics, and image-processing algorithms. As pixel size decreases, sensitivity decreases and noise increases, requiring a more sophisticated noise-reduction algorithm to obtain good image quality. Furthermore, small pixels require high-resolution optics with low chromatic aberration and very small blur circles. Ultimately, there is a tradeoff between noise, resolution, sharpness, and the quality of an image.
This short course provides an overview of "light in to byte out" issues associated with digital and mobile imaging cameras. The course covers, optics, sensors, image processing, and sources of noise in these cameras, algorithms to reduce it, and different methods of characterization. Although noise is typically measured as a standard deviation in a patch with uniform color, it does not always accurately represent human perception. Based on the "visual noise" algorithm described in ISO 15739, an improved approach for measuring noise as an image quality aspect will be demonstrated. The course shows a way to optimize image quality by balancing the tradeoff between noise and resolution. All methods discussed will use images as examples.