In recent years, two-dimensional semiconductor quantum emitters have gotten substantial attention from the solid-state quantum photonics community. Their potential for on-chip integration in silicon-based photonics makes them an ideal candidate to realize large-scale hybrid quantum photonic circuits.
Given the strain-induced quantum emitter formation in two-dimensional WSe2, coupling of such quantum emitters into a SiN photonic waveguides is very promising. However, demonstration of single-photon emission into a waveguide has been elusive so far. Here, we show single-photon emission of strain-induced quantum emitters in a 2D flake integrated into a SiN waveguide. We take advantage of the waveguide edges as nucleation sites for quantum emitters. We observe single-photon emission coupled into the waveguide with a g(2)(0) = 0.15±0.09. This result opens up the way towards large-scale 2D emitter integration in on-chip quantum photonic circuits.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.