Metamaterials and metasurfaces have inspired worldwide interest in the recent two decades due to their extraordinary performance in controlling material parameters and electromagnetic properties. However, most studies on metamaterials and metasurfaces are focused on manipulations of electromagnetic fields and waves, because of their analog natures. The concepts of digital coding and programmable metasurfaces proposed in 2014 have opened a new perspective to characterize and design metasurfaces in a digital way, and made it possible to control electromagnetic fields/waves and process digital information simultaneously, yielding the birth of a new direction of information metasurfaces. On the other hand, artificial intelligence (AI) has become more important in automatic designs of metasurfaces. In this review paper, we first show the intrinsic natures and advantages of information metasurfaces, including information operations, programmable and real-time control capabilities, and space–time-coding strategies. Then we introduce the recent advances in designing metasurfaces using AI technologies, and particularly discuss the close combinations of information metasurfaces and AI to generate intelligent metasurfaces. We present self-adaptively smart metasurfaces, AI-based intelligent imagers, microwave cameras, and programmable AI machines based on optical neural networks. Finally, we indicate the challenges, applications, and future directions of information and intelligent metasurfaces.
Controlling energy flow in waveguides has attractive potential in integrated devices from radio frequencies to optical bands. Due to the spin-orbit coupling, the mirror symmetry will be broken, and the handedness of the near-field source will determine the direction of energy transport. Compared with well-established theories about spin-momentum locking, experimental visualization of unidirectional coupling is usually challenging due to the lack of generic chiral sources and the strict environmental requirement. In this work, we design a broadband near-field chiral source in the microwave band and discuss experimental details to visualize spin-momentum locking in three different metamaterial waveguides, including spoof surface plasmon polaritons, line waves, and valley topological insulators. The similarity of these edge waves relies on the abrupt sign change of intrinsic characteristics of two media across the interface. In addition to the development of experimental technology, the advantages and research status of interface waveguides are summarized, and perspectives on future research are presented to explore an avenue for designing controllable spin-sorting devices in the microwave band.
Programmable metasurfaces enable real-time control of electromagnetic waves in a digital coding manner, which are suitable for implementing time-domain metasurfaces with strong harmonic manipulation capabilities. However, the time-domain metasurfaces are usually realized by adopting the wired electrical control method, which is effective and robust, but there are still some limitations. Here, we propose a light-controllable time-domain digital coding metasurface consisting of a full-polarization dynamic metasurface and a high-speed photoelectric detection circuit, from which the microwave reflection spectra are manipulated by time-varying light signals with periodic phase modulations. As demonstrated, the light-controllable time-domain digital coding metasurface is illuminated by the light signals with two designed time-coding sequences. The measured results show that the metasurface can well generate symmetrical harmonics and white-noise-like spectra, respectively, under such cases in the reflected wave. The proposed light-controllable time-varying metasurface offers a planar interface to tailor and link microwaves with lights in the time domain, which could promote the development of photoelectric hybrid metasurfaces and related multiphysics applications.
Glide symmetry, which is one kind of higher symmetry, is introduced in a special type of plasmonic metamaterial, the transmission lines (TLs) of spoof surface plasmon polaritons (SSPPs), in order to control the dispersion characteristics and modal fields of the SSPPs. We show that the glide-symmetric TL presents merged pass bands and mode degeneracy, which lead to broad working bandwidth and extremely low coupling between neighboring TLs. Dual-conductor SSPP TLs with and without glide symmetry are arranged in parallel as two channels with very deep subwavelength separation (e.g., λ0 / 100 at 5 GHz) for the application of integrated circuits and systems. Mutual coupling between the hybrid channels is analyzed using coupled mode theory and characterized in terms of scattering parameters and near-field distributions. We demonstrate theoretically and experimentally that the hybrid TL array obtains significantly more suppressed crosstalk than the uniform array of two nonglide symmetric TLs. Hence, it is concluded that the glide symmetry can be adopted to flexibly design the propagation of SSPPs and benefit the development of highly compact plasmonic circuits.
An efficient hybrid algorithm is proposed to analyze the electromagnetic scattering properties of metal objects in the lower terahertz (THz) frequency. The metal object can be viewed as perfectly electrical conducting object with a slightly rough surface in the lower THz region. Hence the THz scattered field from metal object can be divided into coherent and incoherent parts. The physical optics and truncated-wedge incremental-length diffraction coefficients methods are combined to compute the coherent part; while the small perturbation method is used for the incoherent part. With the MonteCarlo method, the radar cross section of the rough metal surface is computed by the multilevel fast multipole algorithm and the proposed hybrid algorithm, respectively. The numerical results show that the proposed algorithm has good accuracy to simulate the scattering properties rapidly in the lower THz region.
Target detection is an important part of an automatic target recognition (ATR) system. There would be many false
alarms if using constant false alarm rate (CFAR) algorithm directly on complex synthetic aperture radar (SAR) images
with tremendous speckle. Usually, the speckle should be reduced previously before CFAR. In this paper, a wavelet
transform de-noise and an improved CFAR algorithm have been combined to detect military targets from SAR image.
Different threshold methods were used in the wavelet domain when dealing with the detail information and non-detail
information in the image to receive the edge information and reduce the speckle. Then a three-stage CFAR algorithm
was used to detect the de-noised image. This algorithm contains global CFAR, local CFAR and count filters. Good
results are obtained when the method is used to process high-resolution, HH polarization SAR images. Such algorithms
could be arranged in the SAR image based automatic target recognition system.
KEYWORDS: Antennas, General packet radio service, Data modeling, Transmitters, Electromagnetism, Systems modeling, Ground penetrating radar, Receivers, Data processing, 3D modeling
In previously reported work (Wright and others, 2000) we found that the very early time electromagnetic (VETEM) prototype system produced data from which high resolution images of a buried former foundry site at the Denver Federal Center were made. The soil covering the site is about 30 mS/m conductivity, and is thus relatively unfavorable for ground penetrating radar (GPR) imaging. We have surveyed portions of this site again with new electric field dipole antennas and a new receiver designed for these antennas. Comparisons of the images produced using the loop antennas to those produced using the electric field dipole antennas illustrate that for this application the loop antennas produced more useful images. The larger man-made structures can be seen more clearly because they are not masked by dispersion and/or smaller scale variations as with the electric field dipole antennas. The VETEM system now contains an array of antennas with appropriate transmitters and receivers and can be operated as a low frequency time domain GPR or as a high frequency time domain electromagnetic (EM) system with several possible antenna spacings and polarizations. We plan to examine additional configurations. Numerical modeling of the perpendicular loop antenna configuration has been done and depth estimates produced. We conclude that, as with other GPR and time domain EM systems, the best choice of operating parameters depends on the application and the environment, but the inherent flexibility of the VETEM system allows a wide range of options.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.