Ensuring safety on the road is crucial, and detecting driving distractions plays a vital role in achieving this goal. Accurate identification of distracted driving behaviors facilitates prompt intervention, thereby contributing to a reduction in accidents. We introduce an advanced fully convolutional one-stage (FCOS) object detection algorithm tailored for driving distraction detection that leverages the knowledge distillation framework. Our proposed methodology enhances the conventional FCOS algorithm through the integration of the selective kernel split-attention module. This module bolsters the performance of the backbone network, ResNet, leading to a substantial improvement in the accuracy of the FCOS target detection algorithm. In addition, we incorporate a knowledge distillation framework equipped with a novel local and global knowledge distillation loss function. This framework facilitates the student network to achieve accuracy levels comparable to that of the teacher network while maintaining a reduced parameter count. The outcomes of our approach are promising, achieving a remarkable accuracy of 92.25% with a compact model size of 31.85 million parameters. This advancement paves the way for more efficient and accurate distracted driving detection systems, ultimately contributing to enhanced road safety.
In the final feature map obtained using a convolutional neural network for remote sensing image segmentation, there are great differences between the feature values of the pixels near the edge of the block and those inside the block; ensuring consistency between these feature values is the key to improving the accuracy of segmentation results. The proposed model uses an edge feature branch and a semantic feature branch called the edge assistant feature network (EFNet). The EFNET model consists of one semantic branch, one edge branch, one shared decoder, and one classifier. The semantic branch extracts semantic features from remote sensing images, whereas the edge branch extracts edge features from remote sensing images and edge images. In addition, the two branches extract five-level features through five sets of feature extraction units. The shared decoder sets up five levels of shared decoding units, which are used to further integrate edge features and deep semantic features. This strategy can reduce the feature differences between the edge pixels and the inner pixels of the object, obtaining a per-pixel feature vector with high inter-class differentiation and intra-class consistency. Softmax is used as the classifier to generate the final segmentation result. We selected a representative winter wheat region in China (Feicheng City) as the study area and established a dataset for experiments. The comparison experiment included three original models and two models modified by adding edge features: SegNet, UNet, and ERFNet, and edge-UNet and edge-ERFNet, respectively. EFNet’s recall (91.01%), intersection over union (81.39%), and F1-Score (91.68%) were superior to those of the other methods. The results clearly show that EFNET improves the accuracy of winter wheat extraction from remote sensing images. This is an important basis not only for crop monitoring, yield estimation, and disaster assessment but also for calculating land carrying capacity and analyzing the comprehensive production capacity of agricultural resources.
Vanishing point detection is a challenging task due to the variations in road types and its cluttered background. Currently, most existing texture-based methods detect the vanishing point using pixel-wise voting map generation, which suffers from high computational complexity and the noise votes introduced by the incorrectly estimated texture orientations. In this paper, a block wise weighted soft voting scheme is developed for good performance in complex road scenes. First, the gLoG filters are applied to estimate the texture orientation of each pixel. Then, the image is divided into blocks in a sliding fashion, and a histogram is constructed based on the texture orientation of pixels within each block to obtain the dominant orientation bin. Instead of using the texture orientation of all valid pixels within each block, only the dominant orientation bin is utilized to perform a weighted soft voting. The experimental results on the benchmark dataset show that the proposed method achieves the best performance among all, when compared with the state-of-the-art works.
In view interpolation, information missing often exists in initial depth map, moreover, disocclusion regions usually occur along the foreground object boundaries after 3D warping. Generally, initial depth map and warped depth map have a strong influence on the performance of view interpolation. However, most of existing view interpolation algorithms only emphasize hole filling of the warped color image. In this paper, a superpixel-based method is proposed for initial depth map enhancement and warped depth map hole filling. Firstly, the color image is segmented using simple linear iterative clustering (SLIC) algorithm, and after that, the associated depth map is segmented with the same label. Then, the depthmissing pixels are recovered by considering color and depth superpixel information jointly. Additionally, holes of the disocclusion regions in the warped depth map can also be filled efficiently via superpixel-based segmentation. Experimental results show that with the proposed method the quality of the interpolated view has been improved significantly in terms of both subjective and objective evaluations.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.