We proposed the integrated optical pick-up with a catadioptric system which has a super resolution effect and with ferrofluid cooling structure. All of optical elements such as an objective lens, a laser diode and a photodetector are integrated into the moving part of the actuator to miniaturize the pick-up. Laser beam is double reflected between first reflecting region on top of the objective lens and second reflecting region on a reflecting mirror placed under the objective lens to miniaturize the optical system. The moving part having the laser diode and the photodetector needs high cooling performance to realize the optical system. We developed the cooling structure with ferrofluid held between a magnet and a coil of the actuator. Ferrofluid works as a cooling path to conduct the heat in the moving part towards external parts. We achieved the results as described below. Temperature of the laser diode is approximately equivalent to conventional pick-up against the heat of about 200mW generated in the moving part. Thermal resistance of 120 degree/Watt is available for practical use. The cooling structure leads the results of optical characteristics. As a super resolution effect, spot size of the integrated optical pick-up with wavelength of 660nm and a numerical aperture (NA) of 0.55 is equivalent to spot size of conventional pick-ups with wavelength of 660nm and a NA of 0.65. Focal and tracking error signals for servo control are available for practical use. The cooling performance is enough for realizing the integrated optical pick-up.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.