Reservoir computing is a powerful tool for creating digital twins of a target systems. They can both predict future values of a chaotic timeseries to a high accuracy and also reconstruct the general properties of a chaotic attractor. In this. We show that their ability to learn the dynamics of a complex system can be extended to systems with multiple co-existing attractors, here a four-dimensional extension of the well-known Lorenz chaotic system.
Even parts of the phase space that were not in the training set can be explored with the help of a properly-trained reservoir computer. This includes entirely separate attractors, which we call "unseen". Training on a single noisy trajectory is sufficient. Because Reservoir Computers are substrate-agnostic, this allows the creation of conjugate autonomous reservoir computers for any target dynamical systems.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.