The recently developed total-body positron emission tomography (PET) scanner can capture total-body tracer kinetics, thus enabling systems imaging of multiple organs and interactions between organs, simultaneously. However, their prohibitive cost and sitting requirements may present a barrier for widespread adaptation. Most commercial PET scanners have a limited AFOV. To circumvent the limited AFOV, scanner manufacturers have implemented static step and shoot (SSS) protocols to “stitch” images acquired at multiple bed positions into a single total-body image. However, the resulting “total-body” images may not be quantitative depending on the kinetics of the tracers, thus biasing quantitative imaging comparisons. We propose a dynamic step and shoot (DSS) protocol with 2sec temporal sampling to pursue a continuous imaging protocol with different acquisition times in different bed positions for each pass through the torso. D-optimal criterion was used to optimize the acquisition protocol using a simulated annealing algorithm. The overall approach is illustrated in estimating parameters of a reversible two-compartment PET kinetic model for key organs in the torso. The intra- and inter-subject performance of the optimal DSS (ODSS) protocol was compared with the SSS protocol in terms of bias and variability and in comparison to the total-body (TB) protocol. The simulations suggest that the proposed ODSS protocol outperforms the conventional SSS protocol in both intra- and inter-subject parameter accuracy and precision tests and generates similar macro-parameter estimates compared to the TB scanner. Overall, we demonstrate that we can achieve an optimal temporal imaging schedule to support quantitative TB systems imaging.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.