In this work, reduced order nonlinear state of Lamb wave propagation due to stress-relaxation of composites was experimentally observed. Residual stresses in the composites are developed under tensile-tensile fatigue loading, which reduce over time during relaxation process due to viscoelastic behavior of the polymer matrix. To investigate reduction in nonlinearity of Lamb wave during stress-relaxation, fatigue loading on the composite specimens were conducted at an interval of 75k until 225k cycles for different cyclic frequencies (i.e., 2Hz, 5Hz and 10Hz), and relaxation experiments were conducted for a duration of 8hrs between two successive fatigue loading sequence. Experimental results show a 6-20% reduction acoustic nonlinearity of Lamb wave during relaxation. Reduction in nonlinearity is mainly contributed by stress redistribution at fibers and recovery of plastic strain during relaxation. This technique is imperative to explore long-term performances and conditions of advanced composite structures.
Nonlinear ultrasonic techniques have shown the prominent potential for assessing progressive damage occurred in the composite materials in their fatigue life cycles. Stress relaxation in composite material is being measured in two ways, in-situ analysis (on-line technique) using Lamb waves and Off-line technique using pressure wave (Scanning Acoustic Microscope). In this article, the progressive damage was investigated by a set of fatigue loading experiments on woven composite samples followed by a specific duration of stress relaxation in room temperature condition. A quantitative measure of stress relaxation is determined using Scanning Acoustic Microscope for a fatigue cycle of 225000 with the loading frequency of 10 Hz. To prove this claim, a well-established reduced order nonlinear state of Lamb wave due to stress-relaxation was compared with SAM data analysis. A good agreement between these two techniques is reported herein.
Nonlinear damage in the composite materials is developed with the growth of damages in the material under fatigue loading. Nonlinear ultrasonic techniques are sensitive to early stage damages such as, fiber breakages, matrix micro-cracking, and deboning etc. Here, in this work, early stage damages are detected in Unidirectional (UD) carbon fiber composite under fatigue loading. Specimens are prepared according to American Society for Testing and Materials (ASTM) standard. Specimens are subjected to low cycle high load (LCHL) fatigue loading until 150,000 cycles. Sensors are mounted on the specimen used for actuation and sensing. A five count tone burst with low frequency (fc =375 kHz) followed by high frequency (fc =770 kHz) signal, was used as actuation signal. Pitch-catch experiments are collected at the interval of 5,000 cycles. Sensor signals are collected for various excitation voltage (from 5V to 20V, with 5V interval). First Fourier Transform (FFT) of the sensor signals are performed and side band frequencies are observed at around 770 kHz. Severity of damages in the material is quantified from the ratio of amplitude of side band frequencies with the central frequency. Nonlinearity in the material due to damage development is also investigated from the damage growth curve obtained at various excitation amplitude. Optical Microcopy imaging were also performed at the interval of 5,000 to examine developments of damages inside the material. This study has a good potential in detection of early stage damages in composite materials.
Precursor damage state quantification can be helpful for safety and operation of aircraft and defense equipment’s. Damage develops in the composite material in the form of matrix cracking, fiber breakages and deboning, etc. However, detection and quantification of the damage modes at their very early stage is not possible unless modifications of the existing indispensable techniques are conceived, particularly for the quantification of multiscale damages at their early stage. Here, we present a novel nonlocal mechanics based damage detection technique for precursor damage state quantification. Micro-continuum physics is used by modifying the Christoffel equation. American society of testing and materials (ASTM) standard woven carbon fiber (CFRP) specimens were tested under Tension-Tension fatigue loading at the interval of 25,000 cycles until 500,000 cycles. Scanning Acoustic Microcopy (SAM) and Optical Microscopy (OM) were used to examine the damage development at the same interval. Surface Acoustic Wave (SAW) velocity profile on a representative volume element (RVE) of the specimen were calculated at the regular interval of 50,000 cycles. Nonlocal parameters were calculated form the micromorphic wave dispersion curve at a particular frequency of 50 MHz. We used a previously formulated parameter called “Damage entropy” which is a measure of the damage growth in the material calculated with the loading cycle. Damage entropy (DE) was calculated at every pixel on the RVE and the mean of DE was plotted at the loading interval of 25,000 cycle. Growth of DE with fatigue loading cycles was observed. Optical Imaging also performed at the interval of 25,000 cycles to investigate the development of damage inside the materials. We also calculated the mean value of the Surface Acoustic Wave (SAW) velocity and plotted with fatigue cycle which is correlated further with Damage Entropy (DE). Statistical analysis of the Surface Acoustic Wave profile (SAW) obtained at different fatigue cycles was performed to extract the useful information about the damage state. This study has potential to investigate progressive damage evolution and to quantify at different fatigue cycles.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.