Vertical cavity surface-emitting (VCSEL) arrays offer an attractive platform to develop a photonic Ising computer due to their scalability and compact physical size. Ising interactions can be encoded between VCSELs through mutual optical injection locking, with the polarity of the interaction determined by the presence or absence of a half-wave plate in the optical path, and the bit itself represented by polarization state. The performance of this approach is investigated computationally by extending the spin-flip model to describe a system of mutually injection locked VCSELs for 2-, 3-, and 4-bit Ising problems. Numerical simulations demonstrate that the modeled system solves the given Ising problems significantly better than chance, with critical parameters in the model identified as crucial for achieving an unbiased Ising solver. The quantum well gain anisotropy parameter as well as the ratio of phase anisotropy to decay rate of the local carrier number causes the system to favor particular Ising configurations over others, but this may not prohibit the system from reaching the ground state.
The polarization state (or relative phase) of each VCSEL in an injection-locked array can serve as an analogue Ising bit. We propose use of a spatial light modulator, along with associated collimation optics, to control the interaction strengths of the Ising Hamiltonian. The advantage of this approach is that it affectively allows all-to-all coupling between the Ising bits in a controllable way. The Ising computation would be particularly speedy since the feedback path is all-optical.
The compatibility of silicon photonics with existing CMOS fabrication processes enables the possibility of large scale manufacturing of integrated photonics for communication applications above 100Gbit/s. However, the design of silicon photonics devices that are able to fulfil the high-performance requirements of broad optical bandwidth ( 50nm), low loss (2dB), high-speed (25Gbit/s), low driving voltage (≥ –5V), large fabrication tolerance (±20nm) and high reproducibility across the wafer is a unique practical challenge. In this work, we present a library of passive and active integrated silicon photonic devices that meet the stringent design requirements for communication applications. The design, modelling and experimental results are presented for low loss edge couplers with insertion loss < 2dB, low-loss waveguides and bends, high-performance polarization beam splitter with extinction ratio above 25 dB, broadband directional couplers with optical bandwidth above 50nm, and arrayed waveguide gratings (AWGs) with low insertion loss < 1dB. Last but not least, high-speed silicon modulators (25Gbit/s) with phase efficiency VπL ≤ 2V.cm at DC reverse bias of ≥ –5V and low propagation loss of ≤ ∼1dB/mm are demonstrated.
Silicon modulators based on the carrier depletion mechanism are extensively used in recent years for high-speed data transmission. Lateral PN junctions are the most common electro-optical phase shifters for silicon Mach-Zehnder modulators (MZMs) due to its ease of fabrication. They have a relatively high DC VπLπ of around 2.5 V.cm in the Oband. An alternative approach is to design and optimize vertical PN junctions for lower DC VπLπ, which is currently lacking in the literature for silicon MZMs that operates using carrier depletion mechanism in the O-band. In this work, we look into the design and optimization of silicon phase shifters based on vertical PN junctions for high-modulationefficiency with VπLπ ≤ 1 V.cm, while meeting the stringent low loss budget of ≤ ∼1 dB/mm for data communication in the O-band. This is achieved by varying the offsets of the vertical PN junction with respect to different doping concentrations (2e17/cm3 – 3e18/cm3 ) near the depletion region. Different types of doping schemes are explored and optimized. Our optimized vertical PN junction designs are predicted to give low DC VπLπ of 0.26–0.5 V.cm for low DC reverse bias of ≥ –2V and low propagation loss of ≤ ∼1dB/mm, resulting in α.VπLπ = 1.7 for the best designs, which to the best of our knowledge, is the lowest α.VπLπ at the O-band to date. Electrical and optical modeling are based on our in-house proprietary software that is able to perform both optical and electrical simulations without loss of data fidelity.
We present a library of high-performance passive and active silicon photonic devices at the C-band that is specifically designed and optimized for edge-coupling-enabled silicon photonics platform. These devices meet the broadband (100 nm), low-loss (< 2dB per device), high speed (≥ 25 Gb/s), and polarization diversity requirements (TE and TM polarization extinction ratio ≤ 25 dB) for optical communication applications. Ultra-low loss edge couplers, broadband directional couplers, high-extinction ratio polarization beam splitters (PBSs), and high-speed modulators are some of the devices within our library. In particular, we have designed and fabricated inverse taper fiber-to-waveguide edge couplers of tip widths ranging from 120 nm to 200 nm, and we obtained a low coupling loss of 1.80±0.28 dB for 160 nm tip width. To achieve polarization diversity operation for inverse tapers, we have experimentally realized different designs of polarization beam splitters (PBS). Our optimized PBS has a measured extinction ratio of ≤ 25 dB for both the quasiTE modes, and quasi-TM modes. Additionally, a broadband (100 nm) directional coupler with a 50/50 power splitting ratio was experimentally realized on a small footprint of 20×3 μm2 . Last but not least, high-speed silicon modulators with a range of carrier doping concentrations and offset of the PN junction can be used to optimise the modulation efficiency, and insertion losses for operation at 25 GHz.
SiOxNy shows promises for bright emitters of single photons. We successfully fabricated ultra-low-loss SiOxNy waveguide and AWG with low insertion loss <1dB and <3dB total loss (<2dB on-chip loss and <1dB coupling loss) at 1310nm.
We have successfully fabricated and measured our silicon bridge waveguide polarization beam splitter (PBS). Our proposed PBS is based on a bend directional coupler with a bend bridge waveguide and is experimentally realized using silicon waveguide thickness of 220 nm and 250 nm, which are the commonly used silicon thickness for silicon photonics manufacturing. Our experimental results demonstrated high extinction ratio of > 20 dB for the TE-like mode, and > 15 dB for the TM-like mode across a broad bandwidth of 90 nm that covers the entire C-band with a small footprint of ~18×9 μm2. On-chip high performance PBS is important for polarization diversity in integrated photonics, and for communication applications such as dual-polarization quadrature phase-shift keying (DP-QPSK) modulation.
Silicon microring resonator modulators are versatile active on-chip devices capable of high-speed modulation with low energy consumption. However, the effects of PN junction alignment variance for different doping concentrations during fabrication have not been looked into. In this work, we numerically demonstrate and analyse the optimisation of the silicon microring resonator modulator based on the carrier depletion mechanism for high extinction ratio and low energy consumption at the communication wavelength of 1550 nm. A range of carrier doping concentrations and offset of the PN junction to the waveguide centre can be used to optimise the modulation efficiency, energy consumption and insertion losses of the microring modulator. In particular, the effects of the offset of the PN junction are analysed for three cases in the carrier-depletion silicon phase shifter: (i) p-type doping < n-type doping, (ii) p-type doping = n-type doping, and (iii) p-type doping > n-type doping. Subsequently, three types of microring ring modulator architecture – the all-pass microring resonator, the add-drop microring resonator, and the all-pass dual uncoupled microring resonator – are realised and analysed. Our results suggests that doping concentration between 2 × 1017 cm-3 to 5 × 1017 cm-3, with the p-doping concentration lower than the n-doping concentration, should be employed in order to achieve a tunability of > 16 pm/V and extinction ratio of > 8 dB.
In this work we reported the efficiency and loss performance of a depletion silicon rib phase shifter, with an overlayer of 220 nm, rib width of 500 nm, and etch depth of 125 nm. We identified a range of doping concentrations that allow the phase shifter to operate at <6 V and <5 dB loss. Junction placement variances are done with doping concentrations in this range. The study suggested that with reduced p dopant concentration (2×1017 cm-3), both loss and phase performance will improve by 32% and 20% respectively when p region > n region, compared to central junction.
This paper focuses on latest progress in experimental and theoretical studies on silicon-based carrier-depletion PNjunction phase shifters in terms of high modulation efficiency for energy-efficient photonic networks of high transmission capacity. Modulation efficiency of rib-waveguide phase shifters having various PN-junction configuration are characterized with respect to DC figure of merit defined for phase shifters using carrier-plasma dispersion as the physical principle of refractive-index modulation. In addition, RF drive voltage required for 10-Gb/s on-off keying is characterized for rib-waveguide phase shifters including lateral and vertical PN-junction configurations.
In this work we successfully fabricated and measured PhCs patterned on a LiNbO3 APE waveguide. SIMS data indicate that after 5 hours exchange time a PE layer of 3μm can be obtained. The depth of holes was 2μm by applying a large milling current. We presented experimental characterization of the PhC waveguide and a well-defined PBG was observed from the transmission spectra. An extinction ratio was estimated to be approximately 15dB. Optical transmission results indicate that deep air holes can lead to a sharp band edge. This PhC waveguide is a good candidate for further development of an ultra-compact, low-voltage LiNbO3 modulator.
Modulation format is a key determinant to the performance of an optical communication network. In this work, we study
a silicon phase shifter arranged around rib waveguide topologies and explore its potential to be applied in quadraturephase-
shift-keying (QPSK) optical modulators. Optical QPSK is implemented with four silicon phase shifters embedded
in a nested Mach-Zehnder waveguide. Modulated QPSK signal is simulated by calculating the interference between light
beams pass through each phase shifter. The constellation diagram of modulated QPSK signal is calculated after coherent
demodulation.
Latest computational and experimental studies on high-speed monolithic silicon-based Mach-Zehnder optical modulators
are studied in the light of photonic integrated circuits for digital coherent communication at a bit rate as fast as 128 Gb/s
per wavelength channel. Lateral PN-junction rib-waveguide phase shifters are elaborated with experimental
characteristics of DC phase shifter response in comparison with computational characteristics. High-speed response in
refractive-index dynamics including electron and hole transport in the PN junction is simulated to study speed limit of
the phase shifters. The performance in quadrature phase-shift keying signal generation is characterized in experimental
and computational constellation diagrams. Silicon waveguides for polarization-division multiplexing are designed in
common design rules with the rib-waveguide phase shifters. Long-haul transmission in polarization-multiplexed
quadrature phase-shift keying in 1000-km single-mode fiber link is confirmed with a monolithic silicon Mach-Zehnder
modulator assembled with modulator drivers in a ceramic-based metal package.
Silicon-based optical modulator devices have experienced dramatic improvements over the last decade with data rates
up to 50Gbps for On-Off-Keying (OOK) consuming ultra low power in fJ/bit [1-3]. The ability to fully understand the
performances of these plasma dispersion effect-based devices from a simulation standpoint could be further improved
especially in the coupling of high-speed electrical and optical effects. Here, we report an accurate methodology to study
high-speed eye diagrams from the electrical and optical simulation data of individual silicon modulators. In particular,
we demonstrate the capacity of this simulation methodology by applying it to the current state-of-the-art experimental
demonstrated silicon optical modulator using OOK at 50Gbps [3].
Recent advances in optical waveguides have brought long-awaited technologies closer to practical realization. Although the concept of a single-mode (SM) waveguide has been around for a while, SM condition usually posed very stringent conditions in fabrication for small waveguides. Researchers have developed low loss silicon nitride (Si3N4) at 1550nm wavelength, the developments in specific application have down converted to 1310nm (O-band) so they do not have to compete with internet data for bandwidth and could share the existing optical fiber infrastructure. However, wavelengthdemultiplexer technology at this band is not readily commercial available. Custom-made O-band optical devices for wavelength-demultiplexing have typical losses. Such high losses deplete more than 75% of the already-scarce photons. We studied Si3N4 channel waveguide with ultra-thin slab for (SM) condition at 1310nm wavelength using finite element method (FEM) and 3-D imaginary beam propagation method (IDBPM). We have shown that SM condition is possible for ultra-thin slab with wide waveguide width; such condition can ease the constraint of photolithography, allowing deposition of thin Si3N4 layer to be accomplished in minutes. Studies show that for ultra-thin layer, for example, at 60nm, we can achieve a wide range of widths that fulfilled the SM condition, ranging from 2μm to 5μm. SM condition becomes more stringent when the Si3N4 layer increases. Substrate losses are estimated at 0.001 dB/cm, 0.003 dB/cm, and 0.1 dB/cm for slab height at 100nm, 80nm, and 60nm respectively.
We study a hybrid silicon organic high speed electro-optic phase shifter based on polymer infiltrated P-S-N (“S” refers to the slot) diode capacitor structure. This optical phase shift is realized based on index perturbation both inside the slot via Pockels nonlinearity and within the silicon ridges via the free carrier effect (carrier depletion). The combination of the polymer diode capacitor configuration with the low aspect ratio slot waveguide system leads to a promising method of constructing sub-THz speed optical modulators without sacrificing either modulation efficiency or energy consumption. By optimizing the waveguide geometry in terms of balancing effective index shift and device speed, at least 269 GHz bandwidth can be achieved with a high modulation efficiency of 5.5 V-cm when the diode capacitor is reverse biased by an external radio frequency (RF) voltage signal between the electrodes (optical propagation loss is acceptably low at 4.29 dB).
Low-loss high-speed traveling-wave silicon Mach-Zehnder modulator with reduced series resistance is studied in
microwave and optical measurements. Microwave impedance and propagation loss under reverse bias are characterized
by S-parameter measurements. Resonant loss due to series inductance-resistance-capacitance coupling limits microwave
performances of the traveling-wave modulator. High-speed optical performances are characterized, based on eyediagram
measurements in on-off keying at 10-32 Gb/s and constellation and eye-diagram measurements in differential
phase-shift keying at 20 Gb/s. Dispersion tolerance in error-free transmission in 10-Gb/s on-off keying and 20-Gb/s
differential phase-shift keying is obtained as +/-950 ps/nm and +/-220 ps/nm, respectively by path-penalty measurements.
Transmission performance in 10-Gbps on-off keying is comparable with lithium niobate Mach-Zehnder modulator.
Optical modulation is one of the key determinants to the operating speed of a network. In this work, we report an
accurate methodology to study high-speed eye diagram from electrical and optical simulation data of individual
modulators. The methodology constitutes electrical parameters such as capacitance, conductance and transitioning times
to model time response and effective complex refractive index from optical simulations of phase shifter arms and in turn
model the phase change and resultant loss induced by each arm. This methodology is suitable for interferometer-based
optical devices and has been applied to silicon-based depletion mode modulators at 10-, 40-Gbps.
In this work, we demonstrate a monolithic approach to fabricate free-standing LiNbO3 photonic crystal (PhC) slabs. Ion implantation is first applied to form a buried lattice-damage layer at a specified depth in bulk LiNbO3. Photonic crystal slabs are then made with FIB milling followed by wet etching. A high etching rate of 100 nm/min for the implanted layer has been obtained. A vertical PhC profile has been achieved because the bottoms of the milled cones were truncated by an air gap, with a measured slope angle of the hole sidewalls at 89°. Numerical simulation and free-space illumination measurements of the reflectance spectrum over a broadband wavelength were performed to analyse the properties of various PhC slabs. The free-standing LiNbO3 structures make them easily incorporated into MEMS and show potential applications for tunable optical filters, sensors, and quantum optics applications where high quality, single crystal LiNbO3 is needed.
In this work, we demonstrate two- and three-dimensional (3D) simulations of an active silicon-based photonic crystal
chromatic dispersion compensator utilizing the free carrier dispersion effect. The device has a low power consumption
of 114nW and its intrinsic device modulation speed is predicted to function at 40.5MHz. Due to the device architecture,
simulation must be carried out in 3D so as to fully encapsulate the effects of the photonic crystal contributions in the
active silicon. The novel device allows waveguiding and electrical transport to be individually tailored to a large extent.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.