Recently, the correlation filter (CF)-based methods have achieved great success in the field of object tracking. In most of these methods, the CF utilizes L2 norm as the regularization, which does not pay attention to the stability and robustness of the feature. However, there may exist some unstable points in the image because the object in the video may have different appearance changes. We propose a tracking method based on a structured robust correlation filter (SRCF), which employs the L2,1 norm as the regularization. The robust CF can not only retain the accuracy from the regression formulation but also take into account the stability of the image region to improve the robustness of the appearance model. The alternating direction method of multipliers algorithm is used to solve the L2,1 optimization problem in SRCF. Moreover, the multilayer convolutional features are adopted to further improve the representation accuracy. The proposed method is evaluated in several benchmark datasets, and the results demonstrate that it can achieve comparable performance with respect to the state-of-the-art tracking methods.