In this work, the microencapsulation of water-soluble drug (doxorubicin, Dox) and imaging agent (perfluorocarbon, PFC) is performed by a novel liquid driven tri-axial flow focusing (LDTFF) device. The formation of stable triple-layered cone-jet mode can be observed in the simple well-assembled LDTFF device, providing an easy approach to fabricate mono-disperse triple-layered microcapsules with high encapsulation efficiency, high throughput and low cost in just one step. The fluorescence images show that the microcapsules have a satisfactory core-shell structure. The SEM micrographs show spherical and smooth surface views of the triple-layered microcapsules after being stirred 72h to remove the organic solvent totally. The results of thermo-responsive release experiments of the produced triple-layered microcapsules show these multifunctional capsules can be well stimulated when the environment temperature is beyond 55 degree centigrade. In a word, this novel approach has a great potential in applications such as drug delivery and image-guided therapy.
Encapsulation of curcumin in PLGA microparticles is performed by a coaxial electrohydrodynamic atomization device. To optimize the process, the effects of different control parameters on morphology and size distribution of resultant microparticles are studied systemically. Four main flow modes are identified as the applied electric field intensity increases. The stable cone-jet configuration is found to be available for fabricating monodisperse microparticles with core-shell structures. The results are compared with those observed in traditional emulsion. The drug-loading efficiency is also checked. The present system is advantageous for the enhancement of particle size distribution and drug-loading efficiency in various applications such as drug delivery, biomedicine and image-guided therapy.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.