Although TLD (Tracking-Learning-Detection) algorithm can enable the long-term tracking, there are still many problems in it. In this paper, an improvement is made on the detection module of TLD to satisfy the need of time and accuracy. First, we use the Kalman Filter to narrow the detection range of the detector effectively. Then, we replace the traditional detector with Cascaded Random Forest detector, combining the global and local search strategy, which can reduce the computation burden of the algorithm, and achieve the real-time object tracking. The experimental results on various benchmark video sequences show that the proposed approaches compared with the traditional tracking algorithms not only presents robustness and tracking accuracy in stable background or complex conditions, but also obtains the best computing speed with the use of the Cascaded Random Forest.
In order to increase the accuracy of locating the object by UAV, a robust algorithm based on image-reconnaissance is proposed. First, to record real-time objects reconnoitered by the photovoltaic system on the image. Then, to combines the target’s coordinates on the image with UAV flight parameters. Finally, through coordinate transformation, geometric calculation and other processes, it is able to locate the target’s geodetic coordinates. Monte Carlo simulation is introduced to the simulation experiments, to prove that this targeting method can meet the requirements of practical application. Experimental results show that the proposed algorithm has a good real-time performance, accuracy and reliability.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.