Some of optical telescopes and millimeter- and submillimeter-wave telescopes are constructed on the top of the mountains which are higher than 4,000 meters above sea level, in order to prevent light from absorbing and diffusing and to avoid the influence of bad weather. These telescopes can observe light under much better condition in comparison to that on level ground, however, there are issues that labor efficiency is decreased by the low air pressure (less than two thirds of that on level ground) and the snowsuit and gloves which make difficult to move the body and fingers. Also, in case of a trouble, it may delay the initial response because of altitude and far distance from the base, so, as a result of this, the observation schedule may be forced to change. To solve these problems, we Mitsubishi Electric Corp. are tackling on development of the remote-controlled robot system which can make the labor efficiency in highland similar to that on level ground and minimize the traveling time to move the workers to the sites. In this paper, we introduce overview of the developed remote-controlled robot "DiaroiDTM" which can substitute the labor's work in the sites, and several demonstrations which the robot performed with this remotecontrolled robot and its control system are introduced.
The EUV high-throughput spectroscopic telescope (EUVST) onboard the Solar-C mission has the high spatial (0.4′′) resolution over a wide wavelength range in the vacuum ultraviolet. To achieve high spatial resolution under a design constraint given by the JAXA Epsilon launch vehicle, we further update the optical design to secure margins needed to realize 0.4′′ spatial resolution over a field of view of 100′′×100′′. To estimate the error budgets of spatial and spectral resolutions due to installation and fabrication errors, we perform a sensitivity analysis for the position and orientation of each optical element and for the grating parameters by ray tracing with the Zemax software. We obtain point spread functions (PSF) for rays from 9 fields and at 9 wavelengths on each detector by changing each parameter slightly. A full width at half maximum (FWHM) of the PSF is derived at each field and wavelength position as a function of the perturbation of each optical parameter. Assuming a mount system of each optical element and an error of each optical parameter, we estimate spatial and spectral resolutions by taking installation and fabrication errors into account. The results of the sensitivity analysis suggest that budgets of the total of optical design and the assembly errors account for 15% and 5.8% of our budgets of the spatial resolution in the long wavelength and short wavelength bands, respectively. On the other hand, the grating fabrication errors give a large degradation of spatial and spectral resolutions, and investigations of compensators are needed to relax the fabrication tolerance of the grating surface parameters.
Access to the requested content is limited to institutions that have purchased or subscribe to SPIE eBooks.
You are receiving this notice because your organization may not have SPIE eBooks access.*
*Shibboleth/Open Athens users─please
sign in
to access your institution's subscriptions.
To obtain this item, you may purchase the complete book in print or electronic format on
SPIE.org.
INSTITUTIONAL Select your institution to access the SPIE Digital Library.
PERSONAL Sign in with your SPIE account to access your personal subscriptions or to use specific features such as save to my library, sign up for alerts, save searches, etc.